CUVIER'S BEAKED WHALE (Ziphius cavirostris): Northern Gulf of Mexico Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Cuvier's beaked whales are distributed throughout the world's oceans except for the polar regions (Leatherwood and Reeves 1983, Heyning 1989). Strandings have occurred in all months along the east coast of the U.S. (Schmidly 1981) and throughout the year in the Gulf of Mexico (Würsig *et al.* 2000). In the northern Gulf of Mexico, Cuvier's beaked whales are seen primarily in waters ≥1,000 m (Figure 1) and have been seen in all seasons during aerial and vessel surveys of the northern Gulf of Mexico (i.e., U.S. Gulf of Mexico; Hansen *et al.* 1996, Mullin and Hoggard 2000, Maze-Foley and Mullin 2006, Garrison and Aichinger Dias 2020). Beaked whale sightings made during spring and summer vessel surveys have been widely distributed in waters >500 m deep (Maze-Foley and Mullin 2006).

All the cetacean species found in the oceanic northern Gulf of Mexico almost certainly occur in similar habitat beyond U.S. boundaries in the southern Gulf. There are fewer cetacean sighting and stranding records in the southern Gulf due to more limited effort. Nevertheless, there are records for most oceanic species in the southern Gulf (e.g.,



Figure 1. Distribution of beaked whale on-effort sightings from SEFSC vessel surveys during spring 1996-2001, summer 2003, spring 2004, summer 2009, summer 2017, and summer/fall 2018. Isobaths are the 200-m, 1,000-m, and 2,000-m depth contours. The darker line indicates the U.S. EEZ.

Jefferson and Schiro 1997; Ortega Ortiz 2002; Ortega-Argueta *et al.* 2005; Jefferson *et al.* 2008; Vázquez Castán *et al.* 2009; Whitt *et al.* 2011). This is therefore likely a transboundary stock with Cuba and/or Mexico. Because U.S. waters only comprise about 40% of the entire Gulf of Mexico and 35% of the oceanic (i.e., >200 m) Gulf of Mexico (Mullin and Fulling 2004), abundance and stock boundaries of oceanic species are poorly known.

Cuvier's beaked whales in the northern Gulf of Mexico are managed separately from those in the western North Atlantic. Although there have been no directed studies of the degree of demographic independence between the two areas, this management structure is consistent with the fact that the Gulf of Mexico and western North Atlantic belong to distinct marine ecoregions (Spalding *et al.* 2007, Moore and Merrick 2011). There are insufficient data to determine whether the northern Gulf of Mexico stock comprises multiple demographically independent populations. Additional morphological, acoustic, genetic, and/or behavioral data are needed to further delineate population structure within the Gulf of Mexico and across the broader geographic area.

POPULATION SIZE

The best abundance estimate (Nest) for Cuvier's beaked whales in the northern Gulf of Mexico is 18 (CV=0.75; Table 1). This estimate is from summer 2017 and summer/fall 2018 oceanic surveys covering waters from the 200-m isobath to the seaward extent of the U.S. EEZ (Garrison *et al.* 2020). This estimate was not corrected for the probability of detection on the trackline, and is likely a severe underestimate due to the long dive times of this species. The estimate for the same time period for unidentified Ziphiids was 181 (CV=0.31), which may have also included an unknown number of Cuvier's beaked whales.

Earlier Abundance Estimates

Five point estimates of all Ziphiid (i.e., unidentified Ziphiids, Mesoplodon spp., Cuvier's beaked whale, and Gervais' beaked whale combined) abundance have been made based on data from surveys during: 2003 (June-August), 2004 (April-June), 2009 (July-August), 2017 (July-August), and 2018 (August-October). Each of these surveys had a similar design and was conducted using the same vessel or a vessel with a similar observation platform. Surveys in 2003, 2004, and 2009 employed a single survey team while the 2017 and 2018 surveys employed two survey teams. In addition, the 2017 and 2018 surveys were conducted in "passing" mode rather than "closing" mode. Passing mode eliminates the problems of fragmented tracklines associated with using closing mode in areas with high densities of animals. When using the closing mode with the two-team method, both teams must be allowed the opportunity to see a mammal group and allow it to pass behind the ship before turning to close on it, making it difficult to reacquire the group and resulting in long periods spent chasing the group, with the increased potential for off-effort sightings. For passive acoustics, in closing mode the vessel often turns before the acoustic team is able to achieve a good localization. This is especially important for deep-diving species where visual surveys are less optimal for abundance estimates. However, passing mode can result in increased numbers of unidentified sightings and may have affected group size estimation for distant groups of dolphins and small whales. Comparisons of the survey results over the years 2003 through 2009 required adjustments for these differences. This resulted in revised abundance estimates for all Ziphiids of: 2003, N=573 (CV=0.44); 2004, N=55 (CV=0.72); and 2009, N=276 (CV=0.59; Garrison et al. 2020).

Recent Surveys and Abundance Estimates

An abundance estimate for Cuvier's beaked whales was generated from vessel surveys conducted in the northern Gulf of Mexico from the continental shelf edge (~200-m isobath) to the seaward extent of the U.S. EEZ (Table 1; Garrison et al. 2020). One survey was conducted from 2 July to 25 August 2017 and consisted of 7,302 km of oneffort trackline, and the second survey was conducted from 11 August to 6 October 2018 and consisted of 6,473 km of on-effort trackline within the surveyed strata. Both surveys used a double-platform data-collection procedure to allow estimation of the detection probability on the trackline using the independent observer approach assuming point independence (Laake and Borchers 2004). However, there were too few sightings and too few resightings of this species to allow estimation of detection probability on the trackline. Therefore, abundance estimates were derived using MCDS distance sampling methods that accounted for the effects of covariates (e.g., sea state, glare) on detection probability within the surveyed strip (Thomas et al. 2010) implemented in package mrds (version 2.21, Laake et al. 2020) in the R statistical programming language. The surveys were conducted in passing mode (e.g., Schwarz et al. 2010) while all prior surveys in the Gulf of Mexico have been conducted in closing mode. The 2017 and 2018 estimates were N=12 (CV=1.01) and N=24 (CV=1.01), respectively. The inverse variance weighted mean abundance estimate for Cuvier's beaked whales in oceanic waters during 2017 and 2018 was 18 (CV=0.75; Table 1; Garrison et al. 2020). This estimate was not corrected for the probability of detection on the trackline, and is likely a severe underestimate due to the long dive times of this species. The 2017 and 2018 estimates for unidentified Ziphiids were N=165 (CV=0.47) and N=193 (0.65), respectively, and the inverse variance weighted mean abundance estimate for unidentified Ziphiids was 181 (CV=0.31), which may have also included an unknown number of Cuvier's beaked whales. The 2017 and 2018 estimates for all Ziphiids (i.e., unidentified Ziphiids, Mesoplodon spp., Cuvier's beaked whale, and Gervais' beaked whale combined) were N=303 (CV=0.28) and N=322 (CV=0.34), respectively.

Table 1. Most recent abundance estimate (Nest) and coefficient of variation (CV) of Cuvier's beaked whales in the northern Gulf of Mexico oceanic waters (200 m to the offshore extent of the EEZ) based on the inverse variance weighted mean from summer 2017 and summer/fall 2018 vessel surveys.

Years	Area	Nest	CV
2017, 2018	Gulf of Mexico	18	0.75

Minimum Population Estimate

The minimum population estimate (Nmin) is the lower limit of the two-tailed 60% confidence interval of the log-normal distributed abundance estimate. This is equivalent to the 20th percentile of the log-normal distributed abundance estimate as specified by Wade and Angliss (1997). The best estimate of abundance for Cuvier's beaked whales is 18 (CV=0.75). The minimum population estimate for the northern Gulf of Mexico Cuvier's beaked whale is 10 (Table 2).

Current Population Trend

Using revised abundance estimates for all Ziphiids for surveys conducted in 2003 (June–August), 2004 (April–June), and 2009 (July–August; see above), and the 2017 (July–August) and 2018 (August–October) estimates for all Ziphiids, pairwise comparisons of the log-transformed means were conducted between years, and significant differences were assessed at alpha=0.10. P-values were adjusted for multiple comparisons. There were significant differences between the 2003 and 2004 estimates (p.adjusted=0.012) and the 2004 and 2018 estimates (p.adjusted=0.067; Garrison *et al.* 2020).

However, the statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and long intervals between surveys. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV>0.30) remains below 80% (alpha=0.30) unless surveys are conducted on an annual basis (Taylor *et al.* 2007). In addition, because these surveys are restricted to U.S. waters, it is not possible to distinguish between changes in population size and Gulf-wide shifts in spatial distribution.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of the minimum population size, one half the maximum net productivity rate and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for the Cuvier's beaked whale is 10. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor for this stock is 0.5 because the stock is of unknown status. PBR for the northern Gulf of Mexico Cuvier's beaked whale is 0.1 (Table 2).

Table 2. Best and minimum abundance estimates for Gulf of Mexico Cuvier's beaked whales with Maximum Productivity Rate (Rmax), Recovery Factor (Fr) and PBR.

Nest	CV	Nmin	Fr	Rmax	PBR
18	0.75	10	0.5	0.04	0.1

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total annual estimated fishery-related mortality and serious injury to this stock during 2014–2018 was presumed to be zero, as there were no reports of mortalities or serious injuries to Cuvier's beaked whales or unidentified beaked whales in the Gulf of Mexico (Table 3). Mean annual mortality and serious injury during 2014–2018 for all beaked whales due to other human-caused actions (the *Deepwater Horizon* oil spill) was predicted to be 5.2. The minimum total mean annual human-caused mortality and serious injury for beaked whales during 2014–2018 was, therefore, 5.2. This is a combined estimate for Blainville's, Gervais', and Cuvier's beaked whales. The minimum total mean annual human-caused mortality and serious injury for Cuvier's beaked whale is unknown.

Table 3. Total annual estimated fishery-related mortality and serious injury for northern Gulf of Mexico Cuvier's beaked whales.

Years	Source	Annual Avg.	CV
2014–2018	U.S. fisheries using observer data	0	-

Fisheries Information

There are two commercial fisheries that interact, or that could potentially interact, with this stock in the Gulf of Mexico. These are the Category I Atlantic Highly Migratory Species (high seas) longline fishery and the Category I Atlantic Ocean, Caribbean, Gulf of Mexico large pelagics longline fishery (Appendix III). Percent observer coverage (percentage of sets observed) for these longline fisheries for each year during 2014–2018 was 18, 19, 23, 13 and 20, respectively. There is very little effort within the Gulf of Mexico by the Atlantic Highly Migratory Species (high seas) longline fishery, and no takes of beaked whales within high seas waters of the Gulf of Mexico have been observed or reported thus far. Pelagic swordfish, tunas and billfish are the targets of the pelagic longline fishery operating in the northern Gulf of Mexico. There were no reports of mortality or serious injury to Cuvier's or other beaked whales by this fishery during 2014–2018 (Garrison and Stokes 2016, 2017, 2019, 2020a, 2020b).

Other Mortality

There was one reported stranding of a Cuvier's beaked whale in the Gulf of Mexico during 2014–2018 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 21 May 2019). The whale stranded in 2014 in Florida, and it could not be determined if there was evidence of human interaction. Stranding data underestimate the extent of human and fishery-related mortality and serious injury because not all of the marine mammals that die or are seriously injured in human interactions wash ashore, or, if they do, they are not all recovered (Peltier *et al.* 2012, Wells *et al.* 2015). In particular, oceanic stocks in the Gulf of Mexico are less likely to strand than nearshore coastal stocks or shelf stocks (Williams *et al.* 2011). Additionally, not all carcasses will show evidence of human interaction, entanglement or other fishery-related interaction due to decomposition, scavenger damage, etc. (Byrd *et al.* 2014). Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interaction.

An Unusual Mortality Event (UME) was declared for cetaceans in the northern Gulf of Mexico beginning 1 March 2010 and ending 31 July 2014 (Litz et al. 2014; https://www.fisheries.noaa.gov/national/marine-life-distress/2010-2014-cetacean-unusual-mortality-event-northern-gulf-mexico). It included cetaceans that stranded prior to the Deepwater Horizon (DWH) oil spill (see "Habitat Issues" below), during the spill, and after. Exposure to the DWH oil spill was determined to be the primary underlying cause of the elevated stranding numbers in the northern Gulf of Mexico after the spill (e.g., Schwacke et al. 2014; Venn-Watson et al. 2015; Colegrove et al. 2016; DWH NRDAT 2016; see Habitat Issues section). However, there were no Cuvier's beaked whale strandings recovered within the spatial and temporal boundaries of this UME. A population model was developed to estimate the injury and time to recovery for stocks affected by the DWH oil spill, taking into account long-term effects resulting from mortality, reproductive failure, reduced survival rates, and the proportion of the stock exposed to DWH oil (DWH MMIQT 2015). Overall, this model estimated that the stocks experienced a 6% maximum reduction in population size due to the oil spill (DWH MMIQT 2015). The mortality projected for the years 2010-2013 due to the spill has not been reported previously. Based on the population model, it was projected that 51 beaked whales died during 2010-2013 (four year annual average of 13) due to elevated mortality associated with oil exposure (see Appendix VI). For the 2014-2018 reporting period of this SAR, the population model estimated 26 beaked whales died due to elevated mortality associated with oil exposure. However, this mortality estimate is not comparable to the current abundance estimate derived from visual surveys because the population model included a correction factor for detection probability derived from acoustic density estimates (DWH MMIQT 2015). The population model used to predict beaked whale mortality due to the DWH event has a number of sources of uncertainty. Model parameters (e.g., survival rates, reproductive rates, and life-history parameters) were derived from literature sources for beaked whales occupying waters outside of the Gulf of Mexico. In addition, proxy values for the effects of DWH oil exposure on both survival rates and reproductive success were applied based upon estimated values for common bottlenose dolphins in Barataria Bay. Finally, there was no estimation of uncertainty in model parameters or outputs.

HABITAT ISSUES

The DWH MC252 drilling platform, located approximately 80 km southeast of the Mississippi River Delta in waters about 1,500 m deep, exploded on 20 April 2010. The rig sank, and over 87 days ~3.2 million barrels of oil and

gas were discharged from the wellhead until it was capped on 15 July 2010 (DWH NRDAT 2016). Shortly after the oil spill, the Natural Resource Damage Assessment (NRDA) process was initiated under the Oil Pollution Act of 1990. A variety of NRDA research studies were conducted to determine potential impacts of the spill on marine mammals. These studies estimated that 12% (95%CI: 2–22) of beaked whales in the Gulf, which included Blainville's, Cuvier's and Gervais' beaked whales, were exposed to oil, that 5% (95%CI: 3–8) of females suffered from reproductive failure, and 4% (95%CI: 2–7) of the beaked whale populations suffered adverse health effects (DWH MMIQT 2015). A population model estimated the stocks experienced a maximum 6% reduction in population size (see Other Mortality section above).

Anthropogenic sound in the world's oceans has been shown to affect marine mammals, with vessel traffic, seismic surveys, and active naval sonars being the main anthropogenic contributors to low- and mid-frequency noise in oceanic waters (e.g., Nowacek et al. 2015; Gomez et al. 2016; NMFS 2018). Anthropogenic noise, particularly from military sonar, shipping, and seismic testing, is an increasing habitat concern for beaked whales (Aguilar de Soto et al. 2006; Cox et al. 2006; McCarthy et al. 2011; Tyack et al. 2011; Joyce et al. 2020). Several mass strandings of beaked whales throughout their worldwide range have been associated with naval activities (D'Amico et al. 2009; Filadelfo et al. 2009). In March 2000, 14 beaked whales live stranded in the Bahamas. Six of the whales (5 Cuvier's and 1 Blainville's) died and necropsy revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand (Balcomb and Claridge 2001; NMFS 2001; Cox et al. 2006). Fourteen beaked whales (mostly Cuvier's beaked whales but also including Gervais' and Blainville's beaked whales) stranded in the Canary Islands in 2002 (Cox et al. 2006, Fernandez et al. 2005; Martin et al. 2004). Gas bubble-associated lesions and fat embolism were found in necropsied animals from this event, leading researchers to link nitrogen supersaturation with sonar exposure (Fernandez et al. 2005). The long-term and population consequences of these impacts are less welldocumented and likely vary by species and other factors. Impacts on marine mammal prey from sound are also possible (Carroll et al. 2017), but the duration and severity of any such prey effects on marine mammals are unknown. Finally, ingestion of marine debris, particularly plastics, is a concern; plastic is occasionally found in the stomach contents of stranded beaked whales.

STATUS OF STOCK

Cuvier's beaked whales are not listed as threatened or endangered under the Endangered Species Act, and the northern Gulf of Mexico stock is not considered strategic under the MMPA because PBR is likely a severe underestimate due to the long dive times of this species and because the mean modeled annual human-caused mortality and serious injury due to the DWH oil spill is based on all beaked whale species combined and cannot be apportioned to individual species. No fishery-related mortality or serious injury has been observed; therefore, total fishery-related mortality and serious injury can be considered insignificant and approaching the zero mortality and serious injury rate. The status of Cuvier's beaked whales in the northern Gulf of Mexico, relative to OSP, is unknown. There are insufficient data to determine the population trends for this stock.

REFERENCES CITED

- Aguilar de Soto, N., M. Johnson, P.T. Madsen, P.L. Tyack, A. Bocconcelli and J. Fabrizio Borsani. 2006. Does intense ship noise disrupt foraging in deep-diving Cuvier's beaked whales (*Ziphius cavirostris*)? Mar. Mamm. Sci. 22(3):690–699.
- Balcomb, K.C.I. and D.E. Claridge. 2001. A mass stranding of cetaceans caused by naval sonar in the Bahamas. Bahamas J. Sci. 2:2–12.
- Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. 73pp.
- Byrd, B.L., A.A. Hohn, G.N. Lovewell, K.M. Altman, S.G. Barco, A. Friedlaender, C.A. Harms, W.A. McLellan, K.T. Moore, P.E. Rosel and V.G. Thayer. 2014. Strandings illustrate marine mammal biodiversity and human impacts off the coast of North Carolina, USA. Fish. Bull. 112:1–23.
- Carroll, A.G., R. Przeslawski, A. Duncan, M. Gunning, B. Bruce. 2017. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar. Pollut. Bull. 114:9–24.
- Colegrove, K.M., S. Venn-Watson, J. Litz, M.J. Kinsel, K.A. Terio, E. Fougeres, R. Ewing, D.A. Pabst, W.A. McLellan, S. Raverty, J. Saliki, S. Fire, G. Rappucci, S. Bowen-Stevens, L. Noble, A. Costidis, M. Barbieri, C. Field, S. Smith, R.H. Carmichael, C. Chevis, W. Hatchett, D. Shannon, M. Tumlin, G. Lovewell, W. McFee and T.K. Rowles. 2016. Fetal distress and *in utero* pneumonia in perinatal dolphins during the Northern Gulf of Mexico unusual mortality event. Dis. Aquat. Org. 119(1):1–16.

- Cox, T.M., T.J. Ragen, A.J. Read, E. Vos, R.W. Baird, K. Balcomb, J. Barlow, J. Caldwell, T. Cranford, L. Crum, A. D'Amico, G. D'Spain, A. Fernandez, J. Finneran, R. Gentry, W. Gerth, F. Gulland, J. Hildebrand, D. Houser, T. Hullar, P.D. Jepson, D. Ketten, C.D. MacLeod, P. Miller, S. Moore, D.C. Mountain, D. Palka, P. Ponganis, S. Rommel, T. Rowles, B. Taylor, P. Tyack, D. Wartzok, R. Gisiner, J. Mead and L. Benner. 2006. Understanding the impacts of anthropogenic sound on beaked whales. J. Cetacean Res. Manage. 7(3):177–187
- D'Amico, A., R.C. Gisiner, D.R. Ketten, J.A. Hammock, C. Johnson, P.L. Tyack and J. Mead. 2009. Beaked whale strandings and naval exercises. Aquat. Mamm. 35(4):452–472.
- DWH MMIQT. 2015. Models and analyses for the quantification of injury to Gulf of Mexico cetaceans from the *Deepwater Horizon* Oil Spill, MM_TR.01_Schwacke_Quantification.of.Injury.to.GOM.Cetaceans. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, Florida 33140. PRBD Contribution #: PRBD-2020-02.
- DWH NRDAT [Deepwater Horizon Natural Resource Damage Assessment Trustees]. 2016. Deepwater Horizon oil spill: Final programmatic damage assessment and restoration plan and final programmatic environmental impact statement. Available from: http://www.gulfspillrestoration.noaa.gov/restoration-planning/gulf-plan
- Fernandez, A., J.F. Edwards, F. Rodriguez, A.E. de los Monteros, P. Herraez, P. Castro, J.R. Jaber, V. Martin and M. Arbelo. 2005. "Gas and Fat Embolic Syndrome" involving a mass stranding of beaked whales (Family Ziphiidae) exposed to anthropogenic sonar signals. Vet. Path. 42(4):446–457.
- Filadelfo, R., J. Mintz, E. Michlovich, A. D'Amico, P.L. Tyack and D.R. Ketten. 2009. Correlating military sonar use with beaked whale mass strandings: What do the historical data show? Aquat. Mamm. 35(4):435–444.
- Garrison, L.P. and L. Aichinger Dias. 2020. Distribution and abundance of cetaceans in the northern Gulf of Mexico. NOAA Tech. Memo. NMFS-SEFSC-747. 40pp. Available from: https://repository.library.noaa.gov/view/noaa/25568
- Garrison, L.P. and L. Stokes. 2016. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2014. NOAA Tech. Memo. NMFS-SEFSC-696. 62pp. Available from: https://repository.library.noaa.gov/view/noaa/14390
- Garrison, L.P. and L. Stokes. 2017. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2015. NOAA Tech. Memo. NMFS-SEFSC-709. 61pp.
- Garrison, L.P. and L. Stokes. 2019. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2016. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, Florida 33140. PRBD Contribution # PRBD-2019-01. 62pp.
- Garrison, L.P. and L. Stokes. 2020a. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2017. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, Florida 33140. PRD Contribution # PRD-2020-05. 61pp.
- Garrison, L.P. and L. Stokes. 2020b. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2018. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, Florida 33140. PRD Contribution # PRD-2020-08. 56pp.
- Garrison, L.P., J. Ortega-Ortiz and G. Rappucci. 2020. Abundance of marine mammals in the waters of the U.S. Gulf of Mexico in the summer of 2017 and 2018. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, Florida 33140. PRBD Contribution # PRBD-2020-07. 55pp. Available from: https://repository.library.noaa.gov/view/noaa/26505
- Gomez, C., J.W. Lawson, A.J. Wright, A.D. Buren, D. Tollit and V. Lesage. 2016. A systematic review on the behavioural responses of wild marine mammals to noise: The disparity between science and policy. Can. J. Zool. 94:801–819.
- Hansen, L.J., K.D. Mullin, T.A. Jefferson and G.P. Scott. 1996. Visual surveys aboard ships and aircraft. Pages 55–132 *in:* R.W. Davis and G.S. Fargion (Eds.). Distribution and abundance of marine mammals in the north-central and western Gulf of Mexico: Final report. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA.
- Heyning, J.E. 1989. Cuvier's beaked whale *Ziphius cavirostris* G. Cuvier, 1923. Pages 289–308 *in*: S.H. Ridgway and R. Harrison (Eds.). Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, London. 442pp.
- Jefferson, T.A. and A.J. Schiro. 1997. Distribution of cetaceans in the offshore Gulf of Mexico. Mammal Rev. 27(1): 27–50
- Jefferson, T.A., M.A. Webber and R.L. Pitman. 2008. Marine mammals of the world. Academic Press, London. 573pp.

- Joyce, T.W., J.W. Durban, D.E. Claridge, C.A. Dunn, L.S. Hickmott, H. Fearnbach, K. Dolan and D. Moretti. 2020. Behavioral responses of satellite tracked Blainville's beaked whales (*Mesoplodon densirostris*) to midfrequency active sonar. Mar. Mamm. Sci. 36(1):29–46.
- Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero. Pages 108–189 in: Advanced distance sampling. S.T. Buckland, D.R. Andersen, K.P. Burnham, J.L. Laake, and L. Thomas. Oxford University Press, New York.
- Laake, J., D. Borchers, L. Thomas, D. Miller and J. Bishop. 2020. Package 'mrds': Mark-recapture distance sampling. Version 2.2.3. Available from: http://github.com/DistanceDevelopment/mrds/
- Leatherwood, S. and R.R. Reeves. 1983. The Sierra Club handbook of whales and dolphins. Sierra Club Books, San Francisco, California. 302pp.
- Litz, J.A., M.A. Baran, S.R. Bowen-Stevens, R.H. Carmichael, K.M. Colegrove, L.P. Garrison, S.E. Fire, E.M. Fougeres, R. Hardy, S. Holmes, W. Jones, B.E. Mase-Guthrie, D.K. Odell, P.E. Rosel, J.T. Saliki, D.K. Shannon, S.F. Shippee, S.M. Smith, E.M. Stratton, M.C. Tumlin, H.R. Whitehead, G.A.J. Worthy and T.K. Rowles. 2014. Review of historical unusual mortality events (UMEs) in the Gulf of Mexico (1990–2009): Providing context for the complex and long-lasting northern Gulf of Mexico cetacean UME. Dis. Aquat. Organ. 112(2):161–175.
- Martín, V., A. Servidio and S. García 2004. Mass strandings of beaked whales in the Canary Islands. ECS Newsletter 42:33–6.
- Maze-Foley, K. and K.D. Mullin. 2006. Cetaceans of the oceanic northern Gulf of Mexico: Distributions, group sizes and interspecific associations. J. Cetacean Res. Manage. 8(2):203–213.
- McCarthy, E., D. Moretti, L. Thomas, N. DiMarzio, R. Morrissey, S. Jarvis, J. Ward, A. Izzi and A. Dilley. 2011. Changes in spatial and temporal distribution and vocal behavior of Blainville's beaked whales (*Mesoplodon densirostris*) during multiship exercises with mid-frequency sonar. Mar. Mamm. Sci. 27:E206–E226.
- Moore, J.E. and R. Merrick (Eds.). 2011. Guidelines for assessing marine mammal stocks: Report of the GAMMS III workshop, February 15–18, 2011, La Jolla, California. Dept. of Commerce, NOAA Tech. Memo. NMFS-OPR-47.
- Mullin, K.D. and W. Hoggard. 2000. Visual surveys of cetaceans and sea turtles from aircraft and ships. Pages 111–172 *in:* R.W. Davis, W.E. Evans and B. Würsig (Eds.). Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: Distribution, abundance and habitat associations. Volume II: Technical report. OCS Study MMS 96-0027. Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, Louisiana.
- Mullin, K.D. and G.L. Fulling. 2004. Abundance of cetaceans in the oceanic northern Gulf of Mexico. Mar. Mamm. Sci. 20(4):787–807.
- Nowacek, D.P., C.W. Clark, D. Mann, P.J.O. Miller, H.C. Rosenbaum, J.S. Golden, M. Jasny, J. Kraska and B.L. Southall. 2015. Marine seismic surveys and ocean noise: time for coordinated and prudent planning. Front. Ecol. Environ. 13:378–386.
- Ortega-Argueta, A., C.E. Perez-Sanchez, G. Gordillo-Morales, O.G. Gordillo, D.G. Perez and H. Alafita. 2005. Cetacean strandings on the southwestern coast of the Gulf of Mexico. Gulf Mex. Sci. 2005(2):179–185.
- Peltier, H., W. Dabin, P. Daniel, O. Van Canneyt, G. Dorémus, M. Huon and V. Ridoux. 2012. The significance of stranding data as indicators of cetacean populations at sea: Modelling the drift of cetacean carcasses. Ecol. Indic. 18:278–290.
- Schmidly, D.J. 1981. Marine mammals of the southeastern United States and the Gulf of Mexico. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, FWS/OBS-80/41.165pp.
- Schwacke, L.H., C.R. Smith, F.I. Townsend, R.S. Wells, L.B. Hart, B.C. Balmer, T.K. Collier, S. De Guise, M.M. Fry, L.J. Guillette, S.V. Lamb, S.M. Lane, W.E. McFee, N.J. Place, M.C. Tumlin, G.M. Ylitalo, E.S. Zolman and T.K. Rowles. 2014. Health of bottlenose dolphins (*Tursiops truncatus*) in Barataria Bay, Louisiana following the *Deepwater Horizon* oil spill. Environ. Sci. Technol. 48(1):93–103.
- Schwarz, L.K., T. Gerrodette and F.I. Archer. 2010. Comparison of closing and passing mode from a line-transect survey of delphinids in the eastern Tropical Pacific Ocean. J. Cetacean Res. Manage. 11(3):253–265.
- Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A. Lombana, S.A. Lourie, K.D. Martin, E. McManus, J. Molnar, C.A. Recchia and J. Robertson. 2007. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience 57:573–583.
- Taylor, B.L., M. Martinez, T. Gerrodette, J. Barlow and Y.N. Hrovat. 2007. Lessons from monitoring trends in abundance in marine mammals. Mar. Mamm. Sci. 23(1):157–175.
- Thomas, L., S.T. Buckland, E.A. Rexstad, J.L. Laake, S. Streindberg, S.L. Hedley, J.R.B. Bishop, T.A. Marques and K.P. Burnham. 2010. Distance software: Design and analysis of distance sampling surveys for estimating population size. J. Appl. Ecol. 47(1):5–14.

- Tyack, P.L., W.M. Zimmer, D. Moretti, B.L. Southall, D.E. Claridge, J.W. Durban, C.W. Clark, A. D'Amico, N. DiMarzio, S. Jarvis and E. McCarthy. 2011. Beaked whales respond to simulated and actual navy sonar. PloS One 6:e17009.
- Vázquez Castán, L., A. Serrano and J.A. Galindo. 2009. Estudio preliminar sobre la diversidad, distribución y abundancia de cetáceos en aguas profundas del Golfo de México. Revista UDO Agrícola 9(4):992–997.
- Venn-Watson, S., K.M. Colegrove, J. Litz, M. Kinsel, K. Terio, J. Saliki, S. Fire, R. Carmichael, C. Chevis, W. Hatchett, J. Pitchford, M. Tumlin, C. Field, S. Smith, R. Ewing, D. Fauquier, G. Lovewell, H. Whitehead, D. Rotstein, W. McFee, E. Fougeres and T. Rowles. 2015. Adrenal gland and lung lesions in Gulf of Mexico common bottlenose dolphins (*Tursiops truncatus*) found dead following the *Deepwater Horizon* Oil Spill. PLoS ONE 10(5):e0126538.
- Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3–5, 1996, Seattle, WA. NOAA Tech. Memo. NMFS-OPR-12. 93pp.
- Wells, R.S., J.B. Allen, G. Lovewell, J. Gorzelany, R.E. Delynn, D.A. Fauquier and N.B. Barros. 2015. Carcass-recovery rates for resident bottlenose dolphins in Sarasota Bay, Florida. Mar. Mamm. Sci. 31(1):355–368.
- Whitt, A.D., T.A. Jefferson, M. Blanco, D. Fertl and D. Rees. 2011. A review of marine mammal records of Cuba. Lat. Am. J. Aquat. Mamm. 9(2):65–122.
- Williams, R., S. Gero, L. Bejder, J. Calambokidis, S.D. Kraus, D. Lusseau, A.J. Read and J. Robbins. 2011. Underestimating the damage: Interpreting cetacean carcass recoveries in the context of the *Deepwater Horizon/BP* incident. Conserv. Lett. 4:228–233.
- Würsig, B., T.A. Jefferson and D.J. Schmidly. 2000. The marine mammals of the Gulf of Mexico. Texas A&M University Press, College Station, Texas.