FIN WHALE (*Balaenoptera physalus velifera*): California/Oregon/Washington Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Fin whales are found from temperate to subpolar oceans worldwide, with a distributional hiatus between the Northern and Southern Hemispheres within 20° to 30° of the equator (Edwards et al. 2015). Fin whales occur throughout the North Pacific, from the northeastern Chukchi Sea (Crance et al. 2015) to the Tropic of Cancer (Mizroch et al. 2009), but their wintering areas are poorly known. Archer et al. (2019a) used mitochondrial DNA and single-nucleotide polymorphisms (SNPs) to demonstrate that North Atlantic and North Pacific genetic samples could be correctly assigned to their respective ocean basins with 99% accuracy. North Pacific whales are recognized as a separate subspecies: *Balaenoptera physalus velifera*. Mizroch et al. (2009) described eastern and western North Pacific populations, based on sightings data, catch statistics, recaptures of marked whales, blood chemistry, and acoustics. The two populations are thought to have separate wintering and mating grounds off Asia and North America and during summer, whales from each population may co-occur near the Aleutian Islands and Bering Sea (Mizroch et al. 2009). A non-migratory population occurs in the Gulf of California, based on evidence from photo-ID, genetics, satellite telemetry, and acoustics (Thompson et al. 1992; Tershy et al. 1993; Bérubé et al. 2002; Jiménez López et al. 2019; Nigenda-Morales 2008; Širotić et al. 2017). Fin whales are scarce in the eastern tropical Pacific in summer and winter (Lee 1993, Wade and Gerrodette 1993). Fin whales occur year-round in the Gulf of Alaska (Stafford et al. 2007); the Gulf of California (Tershy et al. 1993; Bérubé et al. 2002); California (Dohl et al. 1983; Širotić et al. 2017); and Oregon and Washington (Moore et al. 1998). Fin whales satellite-tagged in the Southern California Bight (SCB) use the region year-round, although they seasonally range to central California and Baja California before returning to the SCB (Falcone and Schorr 2013). The longest satellite track reported by Falcone and Schorr (2013) was a fin whale tagged in the SCB in January 2014 that moved south to central Baja California by February and north to the Monterey area by late June. Archer et al. (2013) present evidence for geographic separation of fin whale mtDNA clades near Point Conception, California. A significantly higher proportion of ‘clade A’ is composed of samples from the SCB and Baja California, while ‘clade C’ is largely represented by samples from central California, Oregon, Washington, and the Gulf of Alaska.

While knowledge of North Pacific fin whale population structure from genetic and movement patterns is limited, passive acoustic data provides another line of evidence to assess population structure. For example, acoustic data (Širotić et al., 2017; Thompson et al., 1992) support prior photo-ID (Tershy et al. 1993) and genetic conclusions (Bérubé et al. 2002; Nigenda-Morales et al. 2008; Rivera-León et al. 2019) that a resident fin whale population occurs in the Gulf of California, Mexico. Additionally, acoustic data...
indicate there may be a resident population in southern California waters, though this may be confounded by seasonal movements in the region (Širović et al., 2015, 2017). Oleson et al. (2014) report that fin whale songs recorded near Hawaii are similar to those from southern California and the Bering Sea, suggesting movement of animals throughout that range. Song structure throughout the North Pacific is characterized by seasonal and interannual variability (Delarue et al., 2013; Oleson et al., 2014; Širovic et al., 2017; Weirathmueller et al., 2017). Similarities of songs within and across years for multiple North Pacific pelagic areas (Hawaii, Bering Sea, Southern California) suggests that a single population may range throughout this oceanic basin; however there is also evidence for multiple song types in the Bering Sea (Delarue et al., 2013) and the northeast Pacific, including a possible resident population in inland waters of British Columbia (Koot, 2015). Archer et al. (2019b) developed an automated classification method for fin whale note types that revealed analysts have manually misclassified certain fin whale note types near Hawaii, which has implications for stock identification interpretation. These authors found that Hawaii had some of the most distinctive calls, with sequences characterized by “B” type calls with relatively long internote intervals. Archer et al. (2019b) also notes the similarity of B sequences from the Gulf of California in spring that match those described by Širović et al. (2017) as a “long singlet” pattern found in the southern Gulf of California and southern California Bight. In the Archer et al. (2019b) study, the B singlet pattern was most similar to Monterey Bay and northwest Pacific autumn sequences, perhaps reflecting a widespread pattern across populations in the North Pacific, or hinting at some population connectivity between the central and southern U.S. West Coast and southern Gulf of California and the northwest Pacific (Archer et al. 2019b). Acoustic evidence also suggests two populations that use the Chuckchi Sea and central Aleutian Islands area that mix seasonally in the southern Bering Sea (Archer et al. 2019b). Observed movements of fin whales from the southern and central Bering Sea to the Aleutian Islands and Kamchatka documented from Discovery tag recoveries are consistent with these acoustic findings (Mizroch et al. 2009). Further research is necessary to use multiple lines of evidence, such as acoustics, genetics, and satellite telemetry in order to identify population stocks in the North Pacific (Martien et al. 2020).

Insufficient data exists to determine population structure, but from a conservation perspective it may be risky to assume panmixia in the North Pacific. This report covers the stock of fin whales found along the coasts of California, Oregon, and Washington within 300 nmi of shore (Fig. 1). Because fin whale abundance appears lower in winter/spring in California (Dohl et al. 1983; Forney et al. 1995) and in Oregon (Green et al. 1992), it is likely that the distribution of this stock extends seasonally outside these coastal waters. The Marine Mammal Protection Act (MMPA) stock assessment reports recognize three stocks of fin whales in the North Pacific: (1) the California/Oregon/Washington stock (this report), (2) the Hawaii stock, and (3) the Northeast Pacific stock.

POPULATION SIZE

Becker et al. (2020) generated species distribution models (SDMs) from fixed and dynamic ocean variables using 1991-2018 line-transect survey data to estimate density and abundance of cetaceans in the California Current Ecosystem (CCE). The use of SDMs for density estimation is well-established for this region and models incorporate changes in species abundance and habitat shifts over time (Becker et al. 2016, 2017, 2020, Redfern et al. 2017). Additionally, use of SDMs facilitates abundance estimation when survey coverage is limited, as was the case in 2018 when line-transect effort was largely limited to continental shelf waters (Henry et al. 2020). The best-estimate of abundance is taken as the estimate from 2018, or 11,065 (CV=0.405) animals (Becker et al. 2020). This estimate is higher than those reported from Bayesian trend analyses by Moore and Barlow (2011) and Nadeem et al. (2016), but is consistent with their conclusion of increasing abundance. The estimates of Becker et al. (2020) also include sea-state specific correction factors to prorate unidentified large whale sightings to species that would otherwise result in negative estimation biases (Becker et al. 2017).

Minimum Population Estimate

The minimum population estimate for fin whales is taken as the lower 20th percentile of the posterior distribution of 2018 abundance estimate, or 7,970 whales (Becker et al. 2020b).

Current Population Trend
Indications of recovery in CA coastal waters date back to 1979/80 (Barlow 1994), but there is now strong evidence that fin whale abundance increased in the California Current between 1991 and 2018 based on analysis of line transect surveys (Moore and Barlow 2011, Nadeem et al. 2016, Becker et al. 2020a, Fig. 2). Nadeem et al. (2016) reported mean annual abundance increase 7.5% annually during 1991 to 2014.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
Estimated annual rates of increase in the California Current (California, Oregon, and Washington waters) averaged 7.5% from 1991 to 2014 (Nadeem et al. 2016). However, it is unknown how much of this growth is due to immigration rather than birth and death processes. A doubling of the abundance estimate in California waters between 1991 and 1993 cannot be explained by birth and death processes alone, and movement of individuals between U.S. west coast waters and other areas (e.g., Alaska, Mexico) have been documented (Mizroch et al. 1984).

POTENTIAL BIOLOGICAL REMOVAL
The potential biological removal (PBR) level for this stock is calculated as the minimum population size (7,970) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery
factor of 0.5 (for an endangered species, with $N_{\text{min}} > 5,000$ and $CV_{N_{\text{min}}} < 0.50$, Taylor et al. 2003), resulting in a PBR of 80 whales.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fisheries Information

The California large-mesh drift gillnet fishery for swordfish and thresher shark includes one observed entanglement record (in 1999) of a fin whale from 9,158 observed fishing sets during 1990 - 2019 (Carretta 2021). The estimated bycatch of fin whales in this fishery for the most recent 5-year period is zero whales (Carretta 2021).

In addition to drift gillnets, fin whales are observed entangled in longline gear. One fin whale was observed entangled in 2015 in the Hawaii shallow-set longline fishery in waters between the U.S. West Coast and Hawaiian EEZs. The entanglement was assigned a non-serious injury, based on the animal being cut free of the gear with superficial wounds caused by the line (Bradford 2018). The stock identity of this whale is unknown.

Three fin whale serious injuries were documented in unidentified fishing gear during 2015-2019, or 0.6 whales annually (Carretta et al. 2021). Additionally, there were 16 unidentified whale entanglements during this period, of which, 0.28 were prorated as fin whales using the method reported by Carretta (2018). Unidentified whale entanglements typically involve whales seen at-sea with unknown gear configurations that are prorated to represent 0.75 serious injuries per entanglement case. Thus, approximately 0.28 x 0.75 = 0.21 fin whale serious injuries occurred from the 16 unidentified whale entanglement cases during 2015-2019 (Table 1). This represents a negligible annual estimate of 0.04 prorated fin whales derived from sightings of unidentified entangled whales. Total mean annual fishery-related serious injury and mortality is the sum of observed (0.6) and prorated (0.04) mean annual deaths and serious injuries, or 0.64 fin whales annually (Table 1).

Table 1. Summary of available information on the incidental mortality and serious injury of fin whales (CA/OR/WA stock) for commercial fisheries that might take this species.

<table>
<thead>
<tr>
<th>Fishery Name</th>
<th>Data Type</th>
<th>Year(s)</th>
<th>Percent Observer Coverage</th>
<th>Observed (or self-reported)</th>
<th>Estimated Mortality (and serious injury)</th>
<th>Mean Annual Mortality and Serious Injury (CV in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA swordfish and thresher shark drift gillnet fishery</td>
<td>2015-2019</td>
<td>observer</td>
<td>21%</td>
<td>0</td>
<td>0 (n/a)</td>
<td>0 (n/a)</td>
</tr>
<tr>
<td>Unidentified fishery interactions involving fin whales</td>
<td>2015-2019</td>
<td>at-sea sightings</td>
<td>n/a</td>
<td>3</td>
<td>0 (3)</td>
<td>≥ 0.6</td>
</tr>
<tr>
<td>Unidentified fishery interactions involving unidentified whales prorated to fin whale</td>
<td>2015-2019</td>
<td>at-sea sightings</td>
<td>n/a</td>
<td>n/a</td>
<td>0 (0.21)</td>
<td>≥ 0.04</td>
</tr>
</tbody>
</table>

Minimum total annual takes ≥ 0.64 (n/a)

Vessel Strikes

Vessel strikes were implicated in the deaths of 7 fin whales from 2015-2019 (Carretta et al. 2021). Additional mortality from vessel strikes probably goes unreported because the whales do not strand or, if they do, they do not always have obvious signs of trauma. The average observed annual mortality and serious injury due to vessel strikes is 1.4 fin whales per year during 2015-2019. Documented vessel strike deaths and serious injuries are derived from direct counts of whale carcasses and represent minimum impacts. Where evaluated, estimates of detection rates of cetacean carcasses are consistently low across different regions and species (<1% to 36%), highlighting that observed numbers underestimate true impacts (Carretta et al. 2016, Kraus et al. 2005, Williams et al. 2011, Prado et al. 2013, Wells et al. 2015, Pace et al. 2021). Vessel strike mortality was recently estimated for fin whales in the U.S. West Coast EEZ (Rockwood et al. 2017), using an encounter theory model (Martin et al. 2016) that combined species distribution models of whale density (Becker et al. 2016), vessel traffic characteristics (size + speed + spatial use), along with whale movement...
patterns obtained from satellite-tagged animals to estimate encounters that would result in mortality. The estimated number of annual vessel strike deaths was 43 fin whales, though this includes only the period July – November when whales are most likely to be present in the U.S. West Coast EEZ and the season that overlaps with cetacean habitat models generated from line-transect surveys (Becker et al. 2016, Rockwood et al. 2017). This estimate is based on the assumption of a moderate level of vessel avoidance (55%) by fin whales, as measured by the behavior of satellite-tagged blue whales in the presence of vessels (McKenna et al. 2015). The estimated mortality of 43 fin whales annually due to vessel strikes represents approximately 0.4% of the estimated population size (43 deaths / 11,065 whales). The results of Rockwood et al. (2017) also include a no-avoidance encounter model that results in a worst-case estimate of 95 fin whale vessel strike deaths per year, representing approximately 0.8% of the estimated population size. The authors also note that 65% of fin whale vessel strike mortalities occur within 10% of the study area, implying that vessel avoidance mitigation measures may be effective if applied over relatively small regions. Rockwood et al. (2017) also estimated a worst-case vessel strike carcass recovery rate of 5% for fin whales, but this estimate was based on a multi-species average from three species (gray, killer and sperm whales). Another way to estimate carcass recovery and/or documentation rates of fin whales killed or seriously injured by vessels is by directly comparing the documented number of vessel strike deaths and serious injuries with annual estimates of vessel strikes from Rockwood et al. (2017). Comprehensive coast-wide data on vessel strike deaths and serious injuries assumed to result in death are compiled in annual reports on observed anthropogenic mortality for the 13-year period 2007-2019 (Carretta et al. 2013, 2018, 2020, 2021). During this 13-year period, there were 20 observations of fin whale vessel strike deaths and 1 serious injury assumed to result in death, or 1.6 fin whales annually. The ratio of documented vessel strike deaths (1.6/yr) to estimated annual deaths from the moderate avoidance model (43) implies a carcass recovery/documentation rate of 3.7%, which is lower than the worst-case estimate of 5% from Rockwood et al. (2017). There is uncertainty regarding the estimated number of vessel strike deaths, however, it is apparent that carcass recovery rates of fin whales are low.

Vessel traffic within the U.S. West Coast EEZ continues to be a vessel strike threat to all large whale populations (Redfern et al. 2013, Moore et al. 2018). However, a complex of vessel types, speeds, and destination ports all contribute to variability in vessel traffic, and these factors may be influenced by economic and regulatory changes. For example, Moore et al. (2018) found primary vessel travel routes changed when emission control areas (ECAs) were established off the U.S. West Coast. They also found large vessels typically reduced their speed by 3-6 kts in ECAs between 2008 and 2015. The speed reductions are thought to be a strategy to reduce operating costs associated with more expensive, cleaner burning fuels required within the ECAs. In contrast, Moore et al. (2018) noted that some vessels increased their speed when they transited longer routes to avoid the ECAs. Further research is ongoing to understand how variability in vessel traffic affects vessel strike risk and mitigation strategies, though Redfern et al. (2019) note that a combination of vessel speed reductions and expansion of areas to be avoided should be considered.

STATUS OF STOCK

Fin whales in the North Pacific were given protected status by the IWC in 1976. Fin whales are formally listed as "endangered" under the Endangered Species Act (ESA), and consequently this stock is automatically considered as a "depleted" and "strategic" stock under the MMPA. The sum of observed incidental mortality and serious injury, due to commercial fisheries (0.64/yr, including identified and prorated fin whales), plus estimated vessel strikes (43/yr) is 43.6 whales annually, which is less than the calculated PBR (80). Total fishery mortality is less than 10% of PBR and, therefore, may be approaching zero mortality and serious injury rate.

Estimated vessel strike mortality is 43 whales annually, or approximately 0.4% of the estimated population size. As these estimates are model-derived, they are inherently corrected for undocumented and undetected cases, but they represent only a portion of the year (July–December) for which habitat model data are available. The worst-case vessel strike estimate of mortality is 95 whales, based on no avoidance of vessels, or approximately 0.8% of the estimated population size. Neither vessel strike estimate includes incidents outside of the U.S. West Coast EEZ.

There is strong evidence that the population has increased since 1991 (Moore and Barlow 2011, Nadeem et al. 2016, Becker et al. 2020). Increasing levels of anthropogenic sound in the world’s oceans is a habitat concern for whales, particularly for baleen whales that communicate using low-frequency sound (Croll et al. 2002). Behavioral changes associated with exposure to simulated mid-frequency sonar, including no change in behavior, cessation of feeding, increased swimming speeds, and movement away from
simulated sound sources has been documented in tagged blue whales (Goldbogen et al. 2013), but it is unknown if fin whales respond in the same manner to such sounds.

REFERENCES

