GERVAIS’ BEAKED WHALE (*Mesoplodon europaeus*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Within the genus *Mesoplodon*, there are four species of beaked whales that reside in the northwest Atlantic. These include True's beaked whale, *Mesoplodon mirus*; Gervais' beaked whale, *M. europaeus*; Blainville's beaked whale, *M. densirostris*; and Sowerby's beaked whale, *M. bidens* (Mead 1989). These species are difficult to identify to the species level at sea; therefore, much of the available characterization for beaked whales is at genus level only. Stock structure for each species is unknown. Thus, it is plausible the stock could actually contain multiple demographically independent populations that should themselves be stocks, because the current stock spans multiple eco-regions (Longhurst 1998; Spalding et al. 2007).

The distribution of *Mesoplodon* spp. in the northwest Atlantic is known principally from stranding records (Mead 1989; Nawojchik 1994; Mignucci-Giannoni et al. 1999; MacLeod et al. 2006; Jefferson et al. 2008). Off the U.S. Atlantic coast, beaked whale (*Mesoplodon* spp.) sightings have occurred principally along the shelf-edge and deeper oceanic waters (Figure 1; CETAP 1982; Waring et al. 1992; Tove 1995; Waring et al. 2001; Harazaki 2002; Palka 2006). Most sightings were in late spring and summer, which corresponds to survey effort.

Gervais' beaked whales are believed to be principally oceanic, and strandings have been reported from Cape Cod to Florida, into the Caribbean and the Gulf of Mexico (NMFS unpublished data; Leatherwood et al. 1976; Mead 1989; Moore et al. 2005; MacLeod et al. 2006; Jefferson et al. 2008; McLellan et al. 2018). This is the most common species of *Mesoplodon* to strand along the U.S. Atlantic coast.

POPULATION SIZE

The best abundance estimate for *Mesoplodon* beaked whales is the sum of the 2016 survey estimates – 10,107 (CV=0.27). This estimate, derived from shipboard and aerial surveys, covers most of this stock’s known range. Because the survey areas did not overlap, the estimates from the two surveys were added together and the CVs pooled using a delta method to produce an abundance estimate for the stock area.

Earlier abundance estimates

Please see Appendix IV for a summary of abundance estimates, including earlier estimates and survey descriptions. Due to changes in survey methodology these historical data should not be used to make comparisons to more current estimates.

Recent surveys and abundance estimates

Abundance estimates of 6,760 (CV=0.37) and 3,347 (CV=0.29) undifferentiated beaked whales (*Ziphius* and...
Mesoplodon spp.) were generated from vessel surveys conducted in U.S. waters of the western North Atlantic during the summer of 2016 (Table 1; Garrison 2020; Palka 2020). One survey was conducted from 27 June to 25 August in waters north of 38°N latitude and consisted of 5,354 km of on-effort trackline along the shelf break and offshore to the outer limit of the U.S. EEZ (NEFSC and SEFSC 2018). The second vessel survey covered waters from Central Florida to approximately 38°N latitude between the 100-m isobath and the outer limit of the U.S. EEZ during 30 June–19 August. A total of 4,399 km of trackline was covered on effort (NEFSC and SEFSC 2018). Both surveys utilized two visual teams and an independent observer approach to estimate detection probability on the trackline (Laake and Borchers 2004). Mark-recapture distance sampling was used to estimate abundance. Estimates from the two surveys were combined and CVs pooled to produce an abundance estimate for the stock area, yielding a combined total of 10,107 **Mesoplodon** beaked whales (CV=0.27). These estimates are known to be biased low due to the fact that unidentified Ziphiidae abundance was estimated at 3,755 (CV=0.42) in the NE and at 2,812 (CV=0.43) in the SE, and these numbers likely include an unknown number of **Mesoplodon** beaked whales.

An abundance estimate of 5,500 (CV=0.67) **Mesoplodon** spp. beaked whales (not including *Ziphius*) was generated from a shipboard and aerial survey conducted during June–August 2011 (Palka 2012). The aerial portion that contributed to the abundance estimate covered 5,313 km of tracklines that were over waters north of New Jersey from the coastline to the 100-m depth contour, through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,017 km of tracklines that were in water offshore of North Carolina to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the outer limit of the U.S. EEZ). Both sighting platforms used a double-platform data collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers, 2004). Shipboard data were inspected to determine if there was significant responsive movement to the ship (Palka and Hammond 2001). Because there was an insignificant amount of responsive movement for this species, the estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

An abundance estimate of 1,570 (CV=0.65) **Mesoplodon** spp. beaked whales (not including *Ziphius*) was generated from a shipboard survey conducted concurrently (June–August 2011) in waters between central Virginia and central Florida. This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed two independent visual teams searching with 25× bigeye binoculars. A total of 4,445 km of tracklines were surveyed, yielding 290 cetacean sightings. The majority of sightings occurred along the continental shelf break with generally lower sighting rates over the continental slope. Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas et al. 2009).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun–Aug 2011</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>5,500</td>
<td>0.67</td>
</tr>
<tr>
<td>Jun–Aug 2011</td>
<td>Central Virginia</td>
<td>1,592</td>
<td>0.67</td>
</tr>
<tr>
<td>Jun–Aug 2011</td>
<td>Central Florida to lower Bay of Fundy (COMBINED)</td>
<td>7,092</td>
<td>0.54</td>
</tr>
<tr>
<td>Jun–Sep 2016</td>
<td>Central Virginia to lower Bay of Fundy</td>
<td>6,760</td>
<td>0.37</td>
</tr>
<tr>
<td>Jun–Aug 2016</td>
<td>Central Florida to Virginia</td>
<td>3,347</td>
<td>0.29</td>
</tr>
<tr>
<td>Jun–Aug 2016</td>
<td>Central Florida to lower Bay of Fundy (COMBINED)</td>
<td>10,107</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance undifferentiated beaked whales is 10,107 (CV=0.27). The minimum population estimate for undifferentiated beaked whales in the western North Atlantic is 8,085.
Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for
this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the power
to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV
> 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor et al. 2007). There
is current work to standardize the strata-specific previous abundance estimates to consistently represent the same
regions and include appropriate corrections for perception and availability bias. These standardized abundance
estimates will be used in state-space trend models that incorporate environmental factors that could potentially
influence the process and observational errors for each stratum.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Mesoplodon europaeus life history
parameters that could be used to estimate net productivity include: estimated mean length at birth of 2.1 m, length at
sexual maturity of up to 5.2 m for females and up to 4.6 m for males, and maximum age of 27 growth layer groups
(GLG’s), which may be annual layers (Mead 1984).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based
on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the
constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum
productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum
population size for undifferentiated beaked whales is 8.085. The maximum productivity rate is 0.04, the default value
for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown
status relative to optimum sustainable population (OSP) is assumed to be 0.5. PBR for undifferentiated beaked whales
in the western North Atlantic is 81.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The 2013–2017 total average estimated annual mortality of Gervais’ beaked whales in observed fisheries in the
U.S. Atlantic EEZ is zero.

Fishery Information

Total fishery-related mortality and serious injury cannot be estimated separately for each beaked whale species
because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised
adopting the risk-averse strategy of assuming that any beaked whale stock which occurred in the U.S. Atlantic EEZ
might have been subject to the observed fishery-related mortality and serious injury.

Estimated annual average fishery-related mortality or serious injury of this stock in 2013–2017 in U.S. fisheries
was zero. Detailed fishery information is reported in Appendix III.

Earlier Interactions

See Appendix V for more information on historical takes.

Other Mortality

During 2013–2017, 12 Gervais’ beaked whales stranded along the U.S. Atlantic coast (Table 2; NOAA National
Marine Mammal Health and Stranding Response Database, accessed 23 October 2018). Three of these animals
displayed signs of human interaction due to trash ingestion.

Several unusual mass strandings of beaked whales in North Atlantic marine environments have been associated
with naval activities (D’Amico et al. 2009; Filadelfo et al. 2009. During the mid- to late 1980's multiple mass
strandings of Cuvier’s beaked whales (4 to about 20 per event) and small numbers of Gervais’ beaked whale and
Blainville’s beaked whale occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier’s
beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 was associated
with low frequency acoustic sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998; A’Amico
(5 Cuvier’s and 1 Blainville’s) died (Balcomb and Claridge 2001; NMFS 2001; Cox et al. 2006). Four Cuvier’s, 2
Blainville’s, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown, since none of the whales have been resighted. Necropsy of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Cox et al. 2006). Fourteen beaked whales (mostly Cuvier’s beaked whales but also including Gervais’ and Blainville’s beaked whales) stranded in the Canary Islands in 2002 (Cox et al. 2006, Fernandez et al. 2005; Martin et al. 2004). Gas bubble-associated lesions and fat embolism were found in necropsied animals from this event, leading researchers to link nitrogen supersaturation with sonar exposure (Fernandez et al. 2005).

Table 3. Gervais’ beaked whale (Mesoplodon europaeus) strandings along the U.S. Atlantic coast.

<table>
<thead>
<tr>
<th>State</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Carolina</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>South Carolina</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Florida</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>12</td>
</tr>
</tbody>
</table>

a. North Carolina stranding in 2013 deemed human interaction due to plastic ingestion.

b. Florida strandings in 2013 and 2016 deemed HI due to human trash ingestion (yellow cap, piece of corn cob)

HABITAT ISSUES

The chronic impacts of contaminants (polychlorinated biphenyls [PCBs] and chlorinated pesticides [DDT, DDE, dieldrin, etc.] on marine mammal reproduction and health are of concern (e.g., Pierce et al. 2008; Jepson et al. 2016; Hall et al. 2018; Murphy et al. 2018), but research on contaminant levels for the western north Atlantic beaked whales is lacking.

Anthropogenic sound in the world’s oceans has been shown to affect marine mammals, with vessel traffic, seismic surveys, and active naval sonars being the main anthropogenic contributors to low- and mid-frequency noise in oceanic waters (e.g., Nowacek et al. 2015; Gomez et al. 2016; NMFS 2018). The long-term and population consequences of these impacts are less well-documented and likely vary by species and other factors. Impacts on marine mammal prey from sound are also possible (Carroll et al. 2017), but the duration and severity of any such prey effects on marine mammals are unknown.

Climate-related changes in spatial distribution and abundance, including poleward and depth shifts, have been documented in or predicted for plankton species and commercially important fish stocks (Nye et al. 2009; Head et al. 2010; Pinsky et al. 2013; Poloczanska et al. 2013; Hare et al. 2016; Grieve et al. 2017; Morley et al. 2018) and cetacean species (e.g., MacLeod 2009; Sousa et al. 2019). There is uncertainty in how, if at all, the distribution and population size of this species will respond to these changes and how the ecological shifts will affect human impacts to the species.

STATUS OF STOCK

Gervais' beaked whales are not listed as threatened or endangered under the Endangered Species Act and the western North Atlantic stock of Gervais’ beaked whale is not considered strategic under the Marine Mammal Protection Act. There are insufficient data to determine the population size or trends, and, while a PBR value has been calculated for the undifferentiated beaked whales, PBR cannot be calculated for this species independently. The permanent closure of the pelagic drift gillnet fishery has eliminated the principal known source of incidental fishery mortality, and no fishery-related mortality and serious injury has been observed during the recent 5-year (2013–2017) period. Therefore, the total U.S. fishery mortality and serious injury rate can be considered to be insignificant and approaching zero. The status of Gervais’ beaked whales relative to OSP in U.S. Atlantic EEZ is unknown.

REFERENCES CITED

Garrison, L.P. 2020. Abundance of cetaceans along the southeast U.S. east coast from a summer 2016 vessel survey. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRD Contribution # PRD-2020-04, 17 pp.

