LONG-FINNED PILOT WHALE (Globicephala melas melas):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

There are two species of pilot whales in the western Atlantic—the long-finned pilot whale, Globicephala melas melas, and the short-finned pilot whale, G. macrocephalus. These species are difficult to differentiate at sea and cannot be reliably visually identified during either abundance surveys or observations of fishery mortality without high-quality photographs (Rone and Pace 2012); therefore, the ability to separately assess the two species in U.S. Atlantic waters is complex and requires additional information on seasonal spatial distribution. The long-finned pilot whale is distributed from North Carolina to North Africa (and the Mediterranean) and north to Iceland, Greenland and the Barents Sea (Sergeant 1962; Leatherwood et al. 1976; Abend 1993; Bloch et al. 1993; Abend and Smith 1999). The stock structure of the North Atlantic population is uncertain (ICES 1993; Fullard et al. 2000). Morphometric (Bloch and Lastein 1993) and genetic (Siemann 1994; Fullard et al. 2000) studies have provided little support for stock separation across the Atlantic (Fullard et al. 2000). However, Fullard et al. (2000) have proposed a stock structure that is related to sea-surface temperature: 1) a cold-water population west of the Labrador/North Atlantic current, and 2) a warm-water population that extends across the Atlantic in the Gulf Stream.

In U.S. Atlantic waters, pilot whales (Globicephala sp.) are distributed principally along the continental shelf edge off the northeastern U.S. coast in winter and early spring (CETAP 1982; Payne and Heinemann 1993; Abend and Smith 1999; Hamazaki 2002). In late spring, pilot whales move onto Georges Bank and into the Gulf of Maine and more northern waters, and remain in these areas through late autumn (CETAP 1982; Payne and Heinemann 1993). Pilot whales tend to occupy areas of high relief or submerged banks. They are also associated with the Gulf Stream wall and thermal fronts along the continental shelf edge (Waring et al. 1992). Long-finned and short-finned pilot whales overlap spatially along the mid-Atlantic shelf break between Delaware and the southern flank of Georges Bank (Payne and Heinemann 1993; Rone and Pace 2012). Long-finned pilot whales have

Figure 1. Distribution of long-finned (open symbols), short-finned (black symbols), and possibly mixed (gray symbols; could be either species) pilot whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1998, 1999, 2002, 2004, 2006, 2007, 2011, and 2016 and the Department of Fisheries and Oceans Canada 2007 TNASS and 2016 NAISS surveys. The inferred distribution of the two species is preliminary and is valid for June-August only. Isobaths are the 1,000-m and 3,000-m depth contours. The U.S. EEZ is also displayed in green.
occasionally been observed stranded as far south as Florida, and short-finned pilot whales have occasionally been observed stranded as far north as Massachusetts. The latitudinal ranges of the two species therefore remain uncertain, although south of Cape Hatteras, most pilot whale sightings are expected to be short-finned pilot whales, while north of \(\sim 42^\circ N \) most pilot whale sightings are expected to be long-finned pilot whales (Figure 1).

POPULATION SIZE

The best available estimate for long-finned pilot whales in the western North Atlantic is 39,215 (CV=0.30; Table 1; Garrison 2020; Palka 2020; Lawson and Gosselin 2018). This estimate is the sum of the estimates generated from the northeast U.S. summer 2016 surveys covering U.S. waters from central Virginia to Maine and the Department of Fisheries and Oceans Canada summer 2016 survey covering Canadian waters from the U.S. to Labrador. Because the survey areas did not overlap, the estimates from the two surveys were added together and the CVs pooled using a delta method to produce a species abundance estimate for the stock area. The 2016 estimate is larger than those from 2011 because the 2016 estimate is derived from a survey area extending from Newfoundland to Florida, which is about 1,300,000 km\(^2\) larger than the 2011 survey area. In addition, the 2016 survey estimates in U.S. waters were corrected for availability bias (due to diving behavior), whereas the 2011 estimates were not corrected. These survey data have been combined with an analysis of the spatial distribution of the 2 species based on genetic analyses of biopsy samples to derive separate abundance estimates (Garrison and Rosel 2017).

Key uncertainties in the population size estimate include the uncertain separation between the short-finned and long-finned pilot whales; the small negative bias due to the lack of an abundance estimate in the region between the US and the Newfoundland/Labrador survey area; and the uncertainty due to the unknown precision and accuracy of the availability bias correction factor that was applied.

Earlier estimates

Please see appendix IV for a summary of abundance estimates including earlier estimates and survey descriptions. As recommended in the GAMMS II Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable for the determination of the current PBR. Due to changes in survey methodology, these historical data should not be used to make comparisons with more current estimates.

Recent surveys and abundance estimates for *Globicephala* sp.

An abundance estimate of 11,865 (CV=0.57) *Globicephala* sp. was generated from aerial and shipboard surveys conducted during June–August 2011 between central Virginia and the lower Bay of Fundy (Palka 2012). The aerial portion covered 6,850 km of tracklines over waters north of New Jersey between the coastline and the 100-m depth contour through the U.S. and Canadian Gulf of Maine, and up to and including the lower Bay of Fundy. Pilot whales were not observed during the aerial portion of the survey. The shipboard portion covered 3,811 km of tracklines between central Virginia and Massachusetts in waters deeper than the 100-m depth contour out to beyond the U.S. Exclusive Economic Zone (EEZ). Both sighting platforms used a double-platform data-collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers 2004). Estimation of the abundance was based on the independent-observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas *et al.* 2009). The vessel portion of this survey included habitats where both short-finned and long-finned pilot whales occur. A logistic regression (see next section) was used to estimate the abundance of long-finned pilot whales from this survey as 5,636 (CV=0.63).

An abundance estimate of 16,946 (CV=0.43) *Globicephala* sp. was generated from a shipboard survey conducted concurrently (June–August 2011) in waters between central Virginia and central Florida (Garrison 2016). This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed two independent visual teams searching with 25× bigeye binoculars. A total of 4,445 km of tracklines was surveyed, yielding 290 cetacean sightings. The majority of sightings occurred along the continental shelf break north of Cape Hatteras, North Carolina, with a lower number of sightings over the continental slope in the southern portion of the survey. Estimation of pilot whale abundance was based on the independent-observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas *et al.* 2009). This survey included habitats where only short-finned pilot whales are expected to occur.

Abundance estimates of 8,166 (CV=0.31) and 25,114 (CV=0.27) *Globicephala* sp. were generated from vessel surveys conducted in the northeast and southeast U.S., respectively, during the summer of 2016. The Northeast survey
was conducted during 27 June–25 August and consisted of 5,354 km of on-effort trackline. The majority of the survey was conducted in waters north of 38ºN latitude and included trackline along the shelf-break and offshore to the U.S. EEZ. Pilot whale sightings were concentrated along the shelf-break between the 1,000-m and 2,000-m isobaths and along Georges Bank (NMFS 2017). The Southeast vessel survey covered waters from Central Florida to approximately 38ºN latitude between the 100-m isobaths and the U.S. EEZ during 30 June–19 August. A total of 4,399 km of trackline was covered on effort. Pilot whales were observed in high densities along the shelf-break between Cape Hatteras and New Jersey and also in waters further offshore in the mid-Atlantic and off the coast of Florida (NMFS 2017; Garrison and Palka 2018). Both the Northeast and Southeast surveys utilized two visual teams and an independent observer approach to estimate detection probability on the trackline (Laake and Borchers 2004). Mark-recapture distance sampling was used to estimate abundance. A logistic regression model was used to estimate the abundance of long-finned pilot whales from these surveys. For the northeast survey, this resulted in an abundance estimate of 10,997 (CV=0.51) long-finned pilot whales. In the southeast, the model indicated that this survey included habitats expected to exclusively contain short-finned pilot whales so no estimate for long-finned pilot whales was generated.

An abundance estimate of 28,218 (CV=0.36) long-finned pilot whales from the Newfoundland/Labrador region was generated from an aerial survey conducted by the Department of Fisheries and Oceans, Canada (DFO). This survey covered Atlantic Canadian shelf and shelf break waters extending from the northern tip of Labrador to the U.S border off southern Nova Scotia in August and September of 2016 (Lawson and Gosselin 2018). A total of 29,123 km were flown over the Gulf of St. Lawrence/Bay of Fundy/Scotian Shelf stratum using two Cessna Skymaster 337s and 21,037 km were flown over the Newfoundland/Labrador stratum using a DeHavilland Twin Otter. The Newfoundland estimate was derived from the Twin Otter data using two-team mark-recapture multi-covariate distance sampling methods. An availability bias correction factor, which was based on the cetaceans’ surface intervals, was also applied. The Gulf of St. Lawrence/Bay of Fundy/Scotian Shelf survey detected 10 pilot whale groups, however, no abundance estimate was produced.

Spatial Distribution and Abundance Estimates for *Globicephala melas*

Biopsy samples from pilot whales were collected during summer months (June–August) from South Carolina to the southern flank of Georges Bank between 1998 and 2007. These samples were identified to species using phylogenetic analysis of mitochondrial DNA sequences. Stranded specimens that were morphologically identified to species were used to assign clades in the phylogeny to species and thereby identify all samples. The probability of a sample being from a long-finned (or short-finned) pilot whale was evaluated as a function of sea-surface temperature, latitude, and month using a logistic regression. This analysis indicated that the probability of a sample coming from a long-finned pilot whale was near 1 at water temperatures <22°C, and near 0 at temperatures >25°C. The probability of a long-finned pilot whale also increased with increasing latitude. Spatially, during summer months, this regression model predicted that all pilot whales observed in offshore waters near the Gulf Stream are most likely short-finned pilot whales. The area of overlap between the two species occurs primarily along the shelf break off the coast of New Jersey between 38ºN and 40ºN latitude (Garrison and Rosel 2017).

This model was used to partition the abundance estimates from surveys conducted during the summers of 2011 and 2016. The sightings from the southeast shipboard surveys covering waters from Florida to New Jersey were predicted to consist entirely of short-finned pilot whales. The aerial portion of the northeast surveys covered the Gulf of Maine and the Bay of Fundy and surveys where the model predicted that only long-finned pilot whales would occur. The vessel portion of the northeast surveys recorded a mix of both species along the shelf break, and the sightings in offshore waters near the Gulf Stream were predicted to consist predominantly of short-finned pilot whales (Garrison and Rosel 2017).

Table 1. Summary of recent abundance estimates for the western North Atlantic long-finned pilot whale (Globicephala melas melas) by month, year, and area covered during each abundance survey, and resulting abundance estimate (Nbest) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>Nbest</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun–Aug 2011</td>
<td>central Virginia to Lower Bay of Fundy</td>
<td>5,636</td>
<td>0.63</td>
</tr>
<tr>
<td>Jun–Aug 2016</td>
<td>central Virginia to Lower Bay of Fundy</td>
<td>10,997</td>
<td>0.51</td>
</tr>
<tr>
<td>Aug–Sep 2016</td>
<td>Newfoundland/Labrador</td>
<td>28,218</td>
<td>0.36</td>
</tr>
<tr>
<td>Jun–Sep 2016</td>
<td>Central Virginia to Labrador -COMBINED</td>
<td>39,215</td>
<td>0.30</td>
</tr>
</tbody>
</table>
Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for western North Atlantic long-finned pilot whales is 39,215 animals (CV=0.30). The minimum population estimate for long-finned pilot whales is 30,627.

Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor et al. 2007). There is current work to standardize the strata-specific previous abundance estimates to consistently represent the same regions and include appropriate corrections for perception and availability bias. These standardized abundance estimates will be used in state-space trend models that incorporate environmental factors that could potentially influence the process and observational errors for each stratum.

Current and Maximum Net Productivity Rates

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow et al. 1995).

Potential Biological Removal

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a “recovery” factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for long-finned pilot whales is 30,627. The maximum productivity rate is 0.04, the default value for cetaceans. The “recovery” factor is 0.5 because this stock is of unknown status relative to optimum sustainable population (OSP) and the CV of the average mortality estimate is less than 0.3 (Wade and Angliss 1997). PBR for the western North Atlantic long-finned pilot whale is 306.

Annual Human-Caused Mortality and Serious Injury

Total annual observed average fishery-related mortality or serious injury during 2013–2017 was 21 long-finned pilot whales (CV=0.22; Table 2). In bottom trawls and mid-water trawls and in the gillnet fisheries, mortalities were more generally observed north of 40°N latitude and in areas expected to have only long-finned pilot whales. Takes in these fisheries were therefore attributed to the long-finned pilot whales. Takes in the pelagic longline fishery were partitioned according to a logistic regression model (Garrison and Rosel 2017).

Fishery Information

The commercial fisheries that could potentially interact with this stock in the Atlantic Ocean are the Category I northeast sink gillnet and the Atlantic Ocean, Caribbean, Gulf of Mexico large pelagics longline fisheries; and the Category II northeast bottom trawl and northeast mid-water trawl (including pair trawl) fisheries. Detailed fishery information is reported in Appendix III.

Earlier Interactions

Historically, fishery interactions have been documented with pilot whales in the Atlantic pelagic drift gillnet fishery, Atlantic tuna pair trawl and tuna purse seine fisheries, northeast and mid-Atlantic gillnet fisheries, northeast and mid-Atlantic bottom trawl fisheries, northeast midwater trawl fishery, and the pelagic longline fishery. See Appendix V for more information on historical takes.

Longline

Most of the estimated marine mammal bycatch in the U.S. pelagic longline fishery was recorded in U.S. Atlantic EEZ waters between South Carolina and Cape Cod (Garrison 2017). During 2010–2013, all observed interactions and estimated bycatch in the pelagic longline fishery was assigned to the short-finned pilot whale stock because the observed interactions all occurred at times and locations where available data indicated that long-finned pilot whales were very unlikely to occur. Specifically, the highest bycatch rates of undifferentiated pilot whales were observed during September–November along the mid-Atlantic coast (south of 40°N; Garrison 2007), and biopsy data collected
in this area during October–November 2011 indicated that only short-finned pilot whales occurred in this region (Garrison and Rosel 2017). Similarly, all genetic data collected from interactions in the pelagic longline fishery have indicated interactions with short-finned pilot whales. During 2014–2017, pilot whale interactions (all serious injuries) were apportioned between the short-finned and long-finned pilot whale stocks according to a logistic regression model (described above in ‘Spatial Distribution and Abundance Estimates for *Globicephala melas*’) (Garrison and Rosel 2017). See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for historical bycatch information.

Northeast Bottom Trawl

Fishery-related bycatch rates for years 2013–2017 were estimated using an annual stratified ratio-estimator (Lyssikatos et al. 2020). See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for historical bycatch information.

Northeast Mid-Water Trawl (Including Pair Trawl)

Three pilot whales were taken in the northeast mid-water trawl fishery in 2013 near the western edge of Georges Bank. Four were taken in 2014 and 3 during 2016. Using model-based predictions and at-sea identification, these takes have all been assigned as long-finned pilot whales. Expanded estimates of fishery mortality for 2013–2017 are not available, and so for those years the raw number is provided. See Table 2 for bycatch estimates and observed mortality and serious injury for the current 5-year period, and Appendix V for historical bycatch information.

CANADA

Unknown numbers of long-finned pilot whales have been taken in Newfoundland, Labrador, Scotian shelf and Bay of Fundy groundfish gillnets; Atlantic Canada and Greenland salmon gillnets; and Atlantic Canada cod traps (Read 1994).

Table 2. Summary of the incidental mortality and serious injury of long-finned pilot whales (*Globicephala melas*) by U.S. commercial fisheries including the years sampled (Years), the type of data used (Data Type), the annual observer coverage coverage (Observer Coverage), the observed mortalities and serious injuries recorded by on-board observers, the estimated annual mortality and serious injury, the combined annual estimates of mortality and serious injury (Estimated Combined Mortality), the estimated CV of the combined estimates (Est. CVs) and the mean of the combined estimates (CV in parentheses). These are minimum observed counts as expanded estimates are not available.

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Data Type a</th>
<th>Observer Coverage b</th>
<th>Observed Serious Injury c</th>
<th>Observed Mortality</th>
<th>Estimated Serious Injury d</th>
<th>Estimated Mortality</th>
<th>Estimated Combined Mortality</th>
<th>Estimated CVs</th>
<th>Combined Annual Mortality</th>
<th>Mean Combined Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Bottom Trawl</td>
<td>2013</td>
<td>Obs.</td>
<td>0.15</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>16</td>
<td>16</td>
<td>0.42</td>
<td>15 (0.30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>Data</td>
<td>0.17</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>25</td>
<td>32</td>
<td>0.44</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Logbook</td>
<td>0.19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td></td>
<td>0.12</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>29</td>
<td>29</td>
<td>0.58</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td>0.16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>Northeast Mid-Water Trawl</td>
<td>2013</td>
<td>Obs.</td>
<td>0.37</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>na</td>
<td>na</td>
<td>2.0 (na)</td>
</tr>
<tr>
<td>Including Pair Trawl</td>
<td>2014</td>
<td>Data</td>
<td>0.42</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Dealer</td>
<td>0.08</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>Data</td>
<td>0.27</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td>VTR</td>
<td>0.16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>na</td>
<td>na</td>
<td></td>
</tr>
<tr>
<td>Pelagic Longline Fishery</td>
<td>2013</td>
<td>Obs.</td>
<td>0.09</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>na</td>
<td>3.2 (0.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2014</td>
<td>Data</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>9.6</td>
<td>0</td>
<td>9.6</td>
<td>0.43</td>
<td>3.2 (0.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2015</td>
<td>Logbook</td>
<td>0.12</td>
<td>1</td>
<td>0</td>
<td>2.2</td>
<td>0</td>
<td>2.2</td>
<td>0.49</td>
<td>3.2 (0.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>Data</td>
<td>0.15</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>0</td>
<td>1.1</td>
<td>0.6</td>
<td>3.2 (0.33)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017</td>
<td></td>
<td>0.12</td>
<td>1</td>
<td>0</td>
<td>3.3</td>
<td>0</td>
<td>3.3</td>
<td>0.98</td>
<td>3.2 (0.33)</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21 (0.22)</td>
<td></td>
</tr>
</tbody>
</table>

a Observer data (Obs. Data) are used to measure bycatch rates and the data are collected within the Northeast Fisheries Observer Program (NEFOP). NEFSC collects landings data (unallocated Dealer Data and Allocated Dealer Data) which are used as a measure of total landings. Mandatory Vessel Trip Reports (VTR) (Trip Logbook) are used to determine the spatial distribution of landings and fishing effort. Total landings are used as a measure of total effort for the coastal gillnet fishery.

b The observer coverages for the northeast sink gillnet fishery are ratios based on tons of fish landed. Northeast bottom trawl and northeast mid-water trawl fishery coverages are ratios based on trips.

190
Pilot whales have a propensity to mass strand throughout their range, but the role of human activity in these events is unknown. From 2013 to 2017, 16 long-finned pilot whales (*Globicephala melas melas*) were reported stranded between Maine and Florida, including the EEZ (Table 3; NOAA National Marine Mammal Health and Stranding Response Database, accessed 23 October 2018).

Long-finned pilot whales have been reported stranded as far south as Florida, where 2 long-finned pilot whales were reported stranded in November 1998, though their flukes had been apparently cut off, so it is unclear where these animals actually may have died. One additional long-finned pilot whale stranded in South Carolina in 2003, though the confidence in the species identification at the time was only moderate. A genetic sample from this animal has subsequently been sequenced and mitochondrial DNA analysis supports the long-finned pilot whale identification.

During 2013–2017, 1 human interaction was documented in stranded pilot whales within the U.S. EEZ. One long-finned pilot whale in 2014 in Maine was classified as a human interaction.

Table 3. Pilot whale (*Globicephala melas melas*) strandings along the Atlantic coast, 2013–2017. The level of technical expertise among stranding network personnel varies, and given the potential difficulty in correctly identifying stranded pilot whales to species, reports to specific species should be viewed with caution.

<table>
<thead>
<tr>
<th>STATE</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nova Scotia*</td>
<td>15</td>
<td>0</td>
<td>21</td>
<td>12</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>Newfoundland and Labradorb</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mainec</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>New York</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>New Jersey</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Maryland</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL U.S.</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>16</td>
</tr>
</tbody>
</table>

a Data supplied by Nova Scotia Marine Animal Response Society (pers. comm.). Strandings in 2013 include one fishery entanglement (bait net) and one mass stranding of 4 animals.

Stranding data probably underestimate the extent of human and fishery-related mortality and serious injury, particularly for offshore species such as pilot whales, because not all of the whales that die or are seriously injured in human interactions wash ashore, or, if they do, they are not all recovered (Peltier et al. 2012; Wells et al. 2015). Additionally, not all carcasses will show evidence of human interaction, entanglement or other fishery-related interaction due to decomposition, scavenger damage, etc. (Byrd et al. 2014). Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interaction.

HABITAT ISSUES

The chronic impacts of contaminants (polychlorinated biphenyls [PCBs] and chlorinated pesticides [DDT, DDE, dieldrin, etc.]) on marine mammal reproduction and health are of concern (e.g., Schwacke et al. 2002; Jepson et al. 2016; Hall et al. 2018). Moderate levels of these contaminants have been found in pilot whale blubber (Taruski et al. 1975; Muir et al. 1988; Weisbrod et al. 2000). Weisbrod et al. (2000) examined polychlorinated biphenyl and chlorinated pesticide concentrations in bycaught and stranded pilot whales in the western North Atlantic. Contaminant levels were similar to or lower than levels found in other toothed whales in the western North Atlantic, perhaps because they are feeding further offshore than other species (Weisbrod et al. 2000). Dam and Bloch (2000) found very high...
PCB levels in long-finned pilot whales in the Faroes. Also, high levels of toxic metals (mercury, lead, cadmium) and selenium were measured in pilot whales harvested in the Faroe Island drive fishery (Nielsen et al. 2000). However, the population effect of the observed levels of such contaminants on this stock is unknown.

Anthropogenic sound in the world’s oceans has been shown to affect marine mammals, with vessel traffic, seismic surveys, and active naval sonars being the main anthropogenic contributors to low- and mid-frequency noise in oceanic waters (e.g., Nowacek et al. 2015; Gomez et al. 2016; NMFS 2018). The long-term and population consequences of these impacts are less well-documented and likely vary by species and other factors. Impacts on marine mammal prey from sound are also possible (Carroll et al. 2017), but the duration and severity of any such prey effects on marine mammals are unknown.

Climate-related changes in spatial distribution and abundance, including poleward and depth shifts, have been documented in or predicted for plankton species and commercially important fish stocks (Nye et al. 2009; Pinsky et al. 2013; Poloczanska et al. 2013; Grieve et al. 2017; Morley et al. 2018) and cetacean species (e.g., MacLeod 2009; Sousa et al. 2019). There is uncertainty in how, if at all, the distribution and population size of this species will respond to these changes and how the ecological shifts will affect human impacts to the species.

STATUS OF STOCK

The long-finned pilot whale is not listed as threatened or endangered under the Endangered Species Act, and the western North Atlantic stock is not considered strategic under the MMPA because the mean annual human-caused mortality and serious injury does not exceed PBR. Total U.S. fishery-related mortality and serious injury for long-finned pilot whales is less than 10% of the calculated PBR and, therefore, can be considered to be insignificant and approaching zero mortality and serious injury rate. The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown. A population trend analysis for this stock has not been conducted.

Based on the low levels of uncertainty described in the above sections, it expected these uncertainties will have little effect on the designation of the status of this stock.

REFERENCES CITED

Garrison, L.P. and P.E. Rosel. 2017. Partitioning short-finned and long-finned pilot whale bycatch estimates using habitat and genetic information. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRBD Contribution # PRBD-2016-17, 24 pp.

Garrison, L.P. 2020. Abundance of cetaceans along the southeast U.S. east coast from a summer 2016 vessel survey. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRD Contribution # PRD-2020-04, 17 pp.

Lawson J. and J-F. Gosselin in review. Estimates of cetacean abundance from the 2016 NAISS aerial surveys of eastern Canadian waters, with a comparison to estimates from the 2007 TNASS. NAMMCO SC/25/AE/09

Ledwell, W. and J. Huntington. 2015. Incidental entrapments in fishing gear and stranding reported to and responded to by the Whale Release and Strandings Group in Newfoundland and Labrador and a summary of the Whale Release and Strandings program during 2015. Report to Fisheries and Oceans Canada, St. John's, Newfoundland, Canada. 22 pp.

Ledwell, W. and J. Huntington. 2017. Incidental entrapments in fishing gear and stranding reported to and responded to by the Whale Release and Strandings Group in Newfoundland and Labrador and a summary of the Whale

