MELON-HEADED WHALE (*Peponocephala electra*): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The melon-headed whale is distributed worldwide in tropical and sub-tropical waters (Jefferson *et al.* 1994). However, sightings of this species in the western North Atlantic are extremely rare. Most stranding records are from Florida and South Carolina, with a few from Virginia and one from New Jersey. There have been two sightings during NMFS vessel surveys between 1992 and 2016. Melon-headed whales in the western North Atlantic are managed separately from those in the northern Gulf of Mexico. Although there have been no directed studies of the degree of demographic independence between the two areas, this management structure is consistent with evidence for strong population structuring in other areas (Martien *et al.* 2014) and is further supported because the two stocks occupy distinct marine ecoregions (Spalding *et al.* 2007; Moore and Merrick 2011). Due to the paucity of sightings in the

western North Atlantic, there are insufficient data to determine whether the western North Atlantic stock comprises multiple demographically independent populations. Additional morphological, acoustic, genetic, and/or behavioral data are needed to further delineate population structure within the western North Atlantic and across the broader geographic area.

POPULATION SIZE

The number of melon-headed whales off the U.S. Atlantic coast is unknown because they were rarely seen in any surveys. A single group of melonheaded whales was sighted off of Cape Hatteras, North Carolina, in waters >2500 m deep during both a summer 1999 (20 whales) and a winter 2002 (80 whales) vessel survey of the western North Atlantic (Figure 1; NMFS 1999; NMFS 2002). Abundances have not been estimated from these single sightings. Therefore the population size of melon-headed whales is unknown. No confirmed sightings of melon-headed whales have been observed in any other NMFS surveys. Several cruises, a winter 2002 cruise, a summer 2005 cruise, and a summer 2016 cruise, each had one or two sightings of pygmy killer melon-headed whales (identity was not or confirmed), and these groups were recorded off Cape Hatteras or off the North Carolina/South Carolina border.

Minimum Population Estimate

Present data are insufficient to calculate a minimum population estimate for this stock.

Current Population Trend

There are insufficient data to determine the population trends for this stock because no estimates of population size are available.

Figure 1. Distribution of melon-headed whale sightings from NEFSC and SEFSC shipboard and aerial surveys during 1995, 1998, 1999, 2002, 2004, 2006, 2007, 2008, 2010, 2011 and 2016. Isobaths are the 100m, 1,000m and 4,000m depth contours.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal level (PBR) is the product of the minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3.16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is unknown. The maximum productivity rate is 0.04, the default value for cetaceans. The "recovery" factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP), is assumed to be 0.5 because this stock is of unknown status. PBR for the western North Atlantic stock of melon-headed whales is unknown because the minimum population size is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Total annual estimated fishery-related mortality and serious injury to this stock during 2013–2017 was presumed to be zero, as there were no reports of mortalities or serious injuries to melon-headed whales in the western North Atlantic.

Fishery Information

The commercial fishery that could potentially interact with this stock in the Atlantic Ocean is the Category I Atlantic Ocean, Caribbean, Gulf of Mexico large pelagics longline fishery (Appendix III). Pelagic swordfish, tunas and billfish are the targets of the longline fishery. Percent observer coverage (percentage of sets observed) for this fishery for each year during 2013–2017 was 9, 10, 12, 15, and 12, respectively. There were no observed mortalities or serious injuries to melon-headed whales by this fishery in the Atlantic Ocean during 2013–2017 (Garrison and Stokes 2014; 2016; 2017; 2019; 2020).

Other Mortality

There were three reported strandings of melon-headed whales in the U.S. Atlantic Ocean during 2013–2017 (NOAA National Marine Mammal Health and Stranding Response Database unpublished data, accessed 13 June 2018 (SER) and 8 June 2018 (NER)). All three occurred off Florida during 2015. For two of the three strandings, no evidence of human interaction was detected, but for one stranding, evidence of human interaction was detected in the form of an ingested plastic bag. Stranding data probably underestimate the extent of human and fishery-related mortality and serious injury because not all of the marine mammals that die or are seriously injured in human interactions wash ashore, or, if they do, they are not all recovered (Peltier *et al.* 2012; Wells *et al.* 2015). In particular, shelf and slope stocks in the western North Atlantic are less likely to strand than nearshore coastal stocks. Additionally, not all carcasses will show evidence of human interaction, entanglement or other fishery-related interaction due to decomposition, scavenger damage, etc. (Byrd *et al.* 2014). Finally, the level of technical expertise among stranding network personnel varies widely as does the ability to recognize signs of human interaction.

HABITAT ISSUES

Anthropogenic sound in the world's oceans has been shown to affect marine mammals, with vessel traffic, seismic surveys, and active naval sonars being the main anthropogenic contributors to low- and mid-frequency noise in oceanic waters (e.g., Nowacek *et al.* 2015; Gomez *et al.* 2016; NMFS 2018). The long-term and population consequences of these impacts are less well-documented and likely vary by species and other factors. Impacts on marine mammal prey from sound are also possible (Carroll *et al.* 2017), but the duration and severity of any such prey effects on marine mammals are unknown.

The chronic impacts of contaminants (polychlorinated biphenyls [PCBs] and chlorinated pesticides [DDT, DDE, dieldrin, etc.]) on marine mammal reproduction and health are of concern (e.g., Schwacke *et al.* 2002; Jepson *et al.* 2016; Hall *et al.* 2018), but research on contaminant levels for this stock is lacking.

Climate-related changes in spatial distribution and abundance, including poleward and depth shifts, have been documented in or predicted for plankton species and commercially important fish stocks (Nye *et al.* 2009; Pinsky *et al.* 2013; Poloczanska *et al.* 2013; Grieve *et al.* 2017; Morley *et al.* 2018) and cetacean species (e.g., MacLeod 2009; Sousa *et al.* 2019). There is uncertainty in how, if at all, the distribution and population size of this species will respond

to these changes and how the ecological shifts will affect human impacts to the species.

STATUS OF STOCK

Melon-headed whales are not listed as threatened or endangered under the Endangered Species Act, and the Western North Atlantic stock is not considered strategic under the Marine Mammal Protection Act. No fishery-related mortality or serious injury has been observed during recent years; therefore, total fishery-related mortality and serious injury can be considered insignificant and approaching the zero mortality and serious injury rate. The status of melon-headed whales in the western U.S. Atlantic EEZ relative to OSP is unknown. There are insufficient data to determine the population trends for this species.

REFERENCES

- Barlow, J., S. L. Swartz, T. C. Eagle and P. R. Wade. 1995. U.S. Marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-6. 73pp. Available from: https://repository.library.noaa.gov/view/noaa/6219
- Byrd, B.L., A.A. Hohn, G.N. Lovewell, K.M. Altman, S.G. Barco, A. Friedlaender, C.A. Harms, W.A. McLellan, K.T. Moore, P.E. Rosel and V.G. Thayer. 2014. Strandings illustrate marine mammal biodiversity and human impacts off the coast of North Carolina, USA. Fish. Bull. 112:1–23.
- Carroll, A.G., R. Przeslawski, A. Duncan, M. Gunning, B. Bruce. 2017. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar. Pollut. Bull. 114:9–24.
- Garrison, L.P. and L. Stokes. 2014. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2013. NOAA Tech. Memo. NMFS-SEFSC-667. 61 pp. Available from: https://repository.library.noaa.gov/view/noaa/4932
- Garrison, L.P. and L. Stokes. 2016. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2014. NOAA Tech. Memo. NMFS-SEFSC-696. 62 pp. Available from: https://repository.library.noaa.gov/view/noaa/14390
- Garrison, L.P. and L. Stokes. 2017. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2015. NOAA Tech. Memo. NMFS-SEFSC-709. 61 pp.
- Garrison, L.P. and L. Stokes. 2019. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2016. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRBD Contribution # PRBD-2019-01. 62 pp.
- Garrison, L.P. and L. Stokes. 2020. Estimated bycatch of marine mammals and sea turtles in the U.S. Atlantic pelagic longline fleet during 2017. SEFSC PRBD. PRD Contribution # PRD-2020-05 61 pp.
- Gomez, C., J.W. Lawson, A.J. Wright, A.D. Buren, D. Tollit and V. Lesage. 2016. A systematic review on the behavioural responses of wild marine mammals to noise: The disparity between science and policy. Can. J. Zool. 94:801–819.
- Grieve, B.D., J.A. Hare and V.S. Saba. 2017. Projecting the effects of climate change on *Calanus finmarchicus* distribution within the US Northeast continental shelf. Sci. Rep. 7:6264.
- Hall, A.J., B.J. McConnell, L.J. Schwacke, G.M. Ylitalo, R. Williams and T.K. Rowles. 2018. Predicting the effects of polychlorinated biphenyls on cetacean populations through impacts on immunity and calf survival. Environ. Poll. 233:407–418.
- Jefferson, T. A., S. Leatherwood, and M. A. Weber. 1994. Marine mammals of the world. FAO, Rome, 320 pp.
- Jepson, P.D., R. Deaville, J.L. Barber, A. Aguilar, A. Borrell, S. Murphy, J. Barry, A. Brownlow, J. Barnett, S. Berrow and A.A. Cunningham. 2016. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Sci. Rep.-U.K. 6:18573.
- MacLeod, C.D. 2009. Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endang. Species Res. 7:125–136.
- Martien, K.K., M.S. Leslie, B.L. Taylor, P.A. Morin, F.I. Archer, B.L. Hancock-Hanser, P.E. Rosel, N.L. Vollmer, A. Viricel and F. Cipriano. 2017. Analytical approaches to subspecies delimitation with genetic data. Mar. Mamm. Sci. 33:27–55.
- Morley, J.W., R.L. Selden, R.J. Latour, T.L. Frolicher, R.J. Seagraves and M.L. Pinsky. 2018. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13(5):e0196127.
- NMFS [National Marine Fisheries Service]. 1999. Cruise results. Summer Atlantic Ocean marine mammal survey. NOAA Ship Oregon II cruise 236 (99- 05), 4 August - 30 September 1999. Available from SEFSC, 3209 Frederic Street, Pascagoula, MS 39567.

- NMFS [National Marine Fisheries Service]. 2002. Cruise results. Mid-Atlantic cetacean survey. NOAA Ship Gordon Gunter cruise GU-02-01, 6 February - 8 April 2002. Available from SEFSC, 3209 Frederic Street, Pascagoula, MS 39567.
- NMFS [National Marine Fisheries Service]. 2018. 2018 Revisions to: Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing (Version 2.0): Underwater thresholds for onset of permanent and temporary threshold shifts. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-OPR-59, 167 pp. Available from: https://repository.library.noaa.gov/view/noaa/17892
- Nowacek, D.P., C.W. Clark, D. Mann, P.J.O. Miller, H.C. Rosenbaum, J.S. Golden, M. Jasny, J. Kraska and B.L. Southall. 2015. Marine seismic surveys and ocean noise: time for coordinated and prudent planning. Front. Ecol. Environ. 13:378–386.
- Nye, J., J. Link, J. Hare and W. Overholtz. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393:111–129.
- Peltier, H., W. Dabin, P. Daniel, O. Van Canneyt, G. Dorémus, M. Huon and V. Ridoux. 2012. The significance of stranding data as indicators of cetacean populations at sea: Modelling the drift of cetacean carcasses. Ecol. Indic. 18:278–290.
- Pinsky, M.L., B. Worm, M.J. Fogarty, J.L. Sarmiento and S.A. Levin. 2013. Marine taxa track local climate velocities, Science 341:1239–1242.
- Poloczanska, E.S., C.J. Brown, W.J. Sydeman, W. Kiessling, D.S. Schoeman, P.J. Moore, K. Brander, J.F. Bruno, L.B. Buckley, M.T. Burrows, C.M. Duarte, B.S. Halpern, J. Holding, C.V. Kappel, M.I. O'Connor, J.M. Pandolfi, C. Parmesan, F. Schwing, S.A. Thompson and A.J. Richardson. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:919–925.
- Schwacke, L.H., E.O. Voit, L.J. Hansen, R.S. Wells, G.B. Mitchum, A.A. Hohn and P.A. Fair. 2002. Probabilistic risk assessment of reproductive effects of polychlorinated biphenyls on bottlenose dolphins (*Tursiops truncatus*) from the southeast United States coast. Env. Toxic. Chem. 21(12):2752–2764.
- Sousa, A., F. Alves, A. Dinis, J. Bentz, M.J. Cruz and J.P. Nunes. 2019. How vulnerable are cetaceans to climate change? Developing and testing a new index. Ecol. Indic. 98:9–18.
- Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A. Lombana, S.A. Lourie, K.D. Martin, E. McManus, J. Molnar, C.A. Recchia and J. Robertson. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57:573–583.
- Wade, P.R., and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR- 12. 93 pp. Available from: https://repository.library.noaa.gov/view/noaa/15963
- NOAA, National Marine Fisheries Service, 166 Water St., Woods Hole, MA 02543.
- Wells, R.S., J.B. Allen, G. Lovewell, J. Gorzelany, R.E. Delynn, D.A. Fauquier and N.B. Barros. 2015. Carcassrecovery rates for resident bottlenose dolphins in Sarasota Bay, Florida. Mar. Mamm. Sci. 31(1):355–368.