TRUE'S BEAKED WHALE (Mesoplodon mirus): Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Within the genus *Mesoplodon*, there are four species of beaked whales that reside in the Northwest Atlantic. These include True's beaked whale, *M. mirus*; Gervais' beaked whale, *M. europaeus*; Blainville's beaked whale, *M. densirostris*; and Sowerby's beaked whale, *M. bidens* (Mead 1989). These species are difficult to identify to the species level at sea; therefore, much of the available characterization for beaked whales is to genus level only. Stock structure for each species is unknown. Thus, it is plausible that the stock could actually contain multiple demographically independent populations that should themselves be stocks, because the current stock spans multiple eco-regions (Longhurst 2007; Spalding *et al.* 2007).

The distributions of *Mesoplodon* spp. in the Northwest Atlantic are known principally from stranding records (Mead 1989; Nawojchik 1994; Mignucci-Giannoni *et al.* 1999; MacLeod *et al.* 2006; Jefferson *et al.* 2008). Off the U.S. Atlantic coast, beaked whale (*Mesoplodon* spp.) sightings have occurred principally along the shelf-edge and in deeper oceanic waters (Figure 1; CETAP 1982; Waring *et al.* 1992, 2001; Tove 1995; Hamazaki 2002; Palka 2006; NEFSC and SEFSC 2018). Most sightings were in late spring and summer, which corresponds to survey effort.

True's beaked whale is a temperate-water species that has been reported from Cape Breton Island, Nova Scotia, to the Bahamas (Leatherwood *et al.* 1976; Mead 1989; MacLeod *et al.* 2006; Jefferson *et al.* 2008).

POPULATION SIZE

The best abundance estimate for undifferentiated beaked whales is the sum of the 2016 survey estimates—10,107 (CV=0.27). This

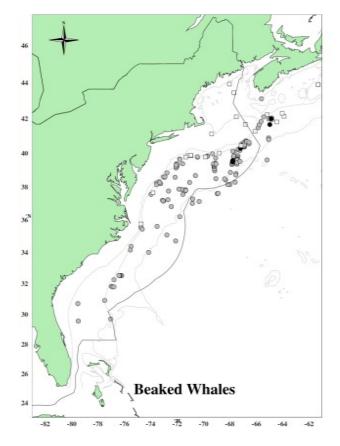


Figure 1: Distribution of beaked whale (includes Ziphius and Mesoplodon spp.) sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1995, 1998, 1999, 2002, 2004, 2006, 2007, 2008, 2010, 2011 and 2016 and DFO's 2007 TNASS and 2016 NAISS surveys. Isobaths are the 200-m, 1000-m and 4000-m depth contours. Circle symbols represent shipboard sightings and squares are aerial sightings. Black symbols are the sightings identified as True's beaked whales.

estimate, derived from shipboard and aerial surveys, covers most of this stock's known range. Because the survey areas did not overlap, the estimates from the two surveys were added together and the CVs pooled using a delta method to produce a species abundance estimate for the stock area. The 2016 estimate is larger than those from 2011 because the some of the 2016 survey estimates were corrected for availability bias (due to diving behavior), whereas the 2011 estimates were not corrected.

Earlier abundance estimates

Please see Appendix IV for a summary of abundance estimates, including earlier estimates and survey

descriptions. Due to changes in survey methodology these historical data should not be used to make comparisons to more current estimates.

Recent surveys and abundance estimates

Abundance estimates of 6,760 (CV=0.37) and 3,347 (CV=0.29) *Mesoplodon* spp. beaked whales (not including *Ziphius.*) were generated from vessel surveys conducted in U.S. waters of the western North Atlantic during the summer of 2016 (Table 1; Garrison 2020; Palka 2020). One survey was conducted from 27 June to 25 August in waters north of 38°N latitude and consisted of 5,354 km of on-effort trackline along the shelf break and offshore to the outer limit of the U.S. EEZ (NEFSC and SEFSC 2018). The second vessel survey covered waters from Central Florida to approximately 38°N latitude between the 100-m isobath and the outer limit of the U.S. EEZ during 30 June–19 August. A total of 4,399 km of trackline was covered on effort (NEFSC and SEFSC 2018). Both surveys utilized two visual teams and an independent observer approach to estimate detection probability on the trackline (Laake and Borchers 2004). Mark-recapture distance sampling was used to estimate abundance. Estimates from the two surveys were combined and CVs pooled to produce an abundance estimate for the stock area, yielding a combined total of 10,107 *Mesoplodon* beaked whales (CV=0.27). These estimates are known to be biased low due to the fact that unidentified Ziphiidae abundance was estimated at 3,755 (CV=0.42) in the NE and at 2,812 (CV=0.43) in the SE, and these numbers likely include an unknown number of *Mesoplodon* beaked whales.

An abundance estimate of 5,500 (CV=0.67) *Mesoplodon* spp. beaked whales was generated from a shipboard and aerial survey conducted during June–August 2011 (Palka 2012). The aerial portion covered 5,313 km of tracklines that were over waters north of New Jersey from the coastline to the 100-m depth contour through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,107 km of tracklines that were in waters offshore of central Virginia to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the outer limit of the U.S. EEZ). Both sighting platforms used a double-platform collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers, 2004). Shipboard data were inspected to determine if there was significant responsive movement to the ship (Palka and Hammond 2001). Because there was an insignificant amount of responsive movement for this species, the estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas *et al.* 2009).

An abundance estimate of 1,570 (CV=0.65) *Mesoplodon* spp. beaked whales was generated from a shipboard survey conducted concurrently (June–August 2011) in waters between central Virginia and central Florida. This shipboard survey included shelf-break and inner continental slope waters deeper than the 50-m depth contour within the U.S. EEZ. The survey employed two independent visual teams searching with $25 \times$ bigeye binoculars. A total of 4,445 km of tracklines were surveyed, yielding 290 cetacean sightings. The majority of sightings occurred along the continental shelf break with generally lower sighting rates over the continental slope. Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the mark-recapture distance sampling option in the computer program Distance (version 6.0, release 2, Thomas *et al.* 2009).

Month/Year	Area	N _{best}	CV
Jun-Aug 2011	Central Virginia to lower Bay of Fundy	5,500	0.67
Jun-Aug 2011	Central Florida to Central Virginia	1,592	0.67
Jun-Aug 2011	Central Florida to lower Bay of Fundy (COMBINED)	7,092	0.54
Jun-Sep 2016	Central Virginia to lower Bay of Fundy	6,760	0.37
Jun-Aug 2016	Central Florida to Virginia	3,347	0.29
Jun-Aug 2016	Central Florida to lower Bay of Fundy (COMBINED)	10,107	0.27

Table 1. Summary of abundance estimates for Mesoplodon spp.^a, month, year, area covered during each abundance survey, and resulting abundance estimate (N_{best}) and coefficient of variation (CV).

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for undifferentiated beaked whales is 21,818 (CV= 0.15). The minimum population estimate for undifferentiated. beaked whales in the western North Atlantic is 19,243.

Current Population Trend

A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor *et al.* 2007). There is current work to standardize the strata-specific previous abundance estimates to consistently represent the same regions and include appropriate corrections for perception and availability bias. These standardized abundance estimates will be used in state-space trend models that incorporate environmental factors that could potentially influence the process and observational errors for each stratum.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Current and maximum net productivity rates are unknown for this stock. Life history parameters that could be used to estimate net productivity include: length at birth is 2 to 3 m, length at sexual maturity 6.1 m for females, and 5.5 m for males, maximum age for females were 30 growth layer groups (GLG's) and for males was 36 GLG's, which may be annual layers (Mead 1984).

For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size for undifferentiated beaked whales is 419,243. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.5. PBR for undifferentiated beaked whales in the western North Atlantic is 192.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

The 2013–2019 total average estimated annual mortality of True's beaked whales in observed fisheries in the U.S. Atlantic EEZ is zero. One True's beaked whale found stranded in New York in 2015 was classified as a fishery interaction (Table 2), resulting in a total annual average fishery-related mortality or serious injury during 2013–2017 of 0.2 animals.

Fishery Information

Total fishery-related mortality and serious injury cannot be estimated separately for each beaked whale species because of the uncertainty in species identification by fishery observers. The Atlantic Scientific Review Group advised adopting the risk-averse strategy of assuming that any beaked whale stock which occurred in the U.S. Atlantic EEZ might have been subject to the observed fishery-related mortality and serious injury.

Estimated annual average fishery-related mortality or serious injury of this stock in 2013-2017 in observed U.S. fisheries was zero. Detailed fishery information is reported in Appendix III.

Earlier Interactions

See Appendix V for more information on historical takes.

Other Mortality

During 2013–2017, 6 True's beaked whales stranded along the U.S. Atlantic coast (Table 2; NOAA National Marine Mammal Health and Stranding Response Database, accessed 23 October 2018). One of these animals showed evidence of a fishery interaction.

Several unusual mass strandings of beaked whales throughout their worldwide range have been associated with naval activities (D'Amico et al. 2009; Filadelfo et al. 2009). During the mid- to late 1980's multiple mass strandings of Cuvier's beaked whales (4 to about 20 per event) and small numbers of Gervais' beaked whale and Blainville's beaked whale occurred in the Canary Islands (Simmonds and Lopez-Jurado 1991). Twelve Cuvier's beaked whales that live stranded and subsequently died in the Mediterranean Sea on 12-13 May 1996 were associated with lowfrequency sonar tests conducted by the North Atlantic Treaty Organization (Frantzis 1998; D'Amico et al. 2009; Filadelfo et al. 2009). In March 2000, 14 beaked whales live stranded in the Bahamas; 6 beaked whales (5 Cuvier's and 1 Blainville's) died (Balcomb and Claridge 2001; NMFS 2001; Cox et al. 2006). Four Cuvier's, 2 Blainville's, and 2 unidentified beaked whales were returned to sea. The fate of the animals returned to sea is unknown, since none of the whales have been resignted. Necropsy of 6 dead beaked whales revealed evidence of tissue trauma associated with an acoustic or impulse injury that caused the animals to strand. Subsequently, the animals died due to extreme physiologic stress associated with the physical stranding (i.e., hyperthermia, high endogenous catecholamine release) (Cox et al. 2006). Fourteen beaked whales (mostly Cuvier's beaked whales but also including Gervais' and Blainville's beaked whales) stranded in the Canary Islands in 2002 (Martin et al. 2004; Fernandez et al. 2005; Cox et al. 2006). Gas bubble-associated lesions and fat embolism were found in necropsied animals from this event, leading researchers to link nitrogen supersaturation with sonar exposure (Fernandez et al. 2005).

State	2013	2014	2015	2016	2017	Total
New York	0	2	2	0	0	4
Virginia	0	0	0	0	1	1
Georgia	0	0	0	1	0	1
Total	0	2	2	1	1	6

Table 2. True's beaked whale (Mesoplodon mirus) strandings along the U.S. Atlantic coast.

HABITAT ISSUES

The chronic impacts of contaminants (polychlorinated biphenyls [PCBs] and chlorinated pesticides [DDT, DDE, dieldrin, etc.]) on marine mammal reproduction and health are of concern (e.g., Pierce *et al.* 2008; Jepson *et al.* 2016; Hall *et al.* 2018; Murphy *et al.* 2018), but research on contaminant levels for the western north Atlantic stock of sperm whales is lacking.

Anthropogenic sound in the world's oceans has been shown to affect marine mammals, with vessel traffic, seismic surveys, and active naval sonars being the main anthropogenic contributors to low- and mid-frequency noise in oceanic waters (e.g., Nowacek *et al.* 2015; Gomez *et al.* 2016; NMFS 2018). The long-term and population consequences of these impacts are less well-documented and likely vary by species and other factors. Impacts on marine mammal prey from sound are also possible (Carroll *et al.* 2017), but the duration and severity of any such prey effects on marine mammals are unknown.

Climate-related changes in spatial distribution and abundance, including poleward and depth shifts, have been documented in or predicted for plankton species and commercially important fish stocks (Nye *et al.* 2009; Pinsky *et al.* 2013; Poloczanska *et al.* 2013; Hare *et al.* 2016; Grieve *et al.* 2017; Morley *et al.* 2018) and cetacean species (e.g., MacLeod 2009; Sousa *et al.* 2019). There is uncertainty in how, if at all, the distribution and population size of this species will respond to these changes and how the ecological shifts will affect human impacts to the species.

STATUS OF STOCK

True's beaked whales are not listed as threatened or endangered under the Endangered Species Act and the western North Atlantic stock is not considered strategic under the Marine Mammal Protection Act. There are insufficient data to determine the population size or trends, and, while a PBR value has been calculated for undifferentiated beaked whales, PBR cannot be calculated for this species independently. The permanent closure of the pelagic drift gillnet fishery has eliminated the principal known source of incidental fishery mortality, and only one fishery-related mortality and serious injury has been reported during the recent 5-year (2013–2017) period. Therefore, total U.S. fishery-related mortality and serious injury rate can be considered to be insignificant and approaching zero. The status of True's beaked whales relative to OSP in U.S. Atlantic EEZ is unknown.

REFERENCES CITED

- Balcomb, K.C. III, and D.E. Claridge, 2001. A mass stranding of cetaceans caused by naval sonar in the Bahamas. Bahamas J. Sci. 2:2–12.
- Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. marine mammal stock sssessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. 73 pp.
- Barlow, J., M.C. Ferguson, W.F. Perrin, L. Balance, T. Gerrodette, G. Joyce, C.D. MacLeod, K. Mullin, D.L. Palka and G. Waring, 2006. Abundance and densities of beaked and bottlenose whales (family *Ziphiidae*). J. Cetacean Res. Manage. 7:263–270.
- Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers and L. Thomas. 2001. Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, New York, New York. 432 pp.
- Carroll, A.G., R. Przeslawski, A. Duncan, M. Gunning, B. Bruce. 2017. A critical review of the potential impacts of marine seismic surveys on fish & invertebrates. Mar. Pollut. Bull. 114:9–24.
- CETAP 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. outer continental shelf, final report #AA551-CT8-48. Cetacean and Turtle Assessment Program, , University of Rhode Island. Bureau of Land Management, Washington, DC. 538 pp.
- Cox, T.M., T.J. Ragen, A.J. Read, E. Vos, R.W. Baird, K. Balcomb, J. Barlow, J. Caldwell, T. Cranford, L. Crum, A. D'Amico, G.D. Spain, A. Fernandez, J. Finneran, R. Gentry, W. Gerth, F. Gulland, J. Hilderbrand, D. Houser, T. Hullar, P.D. Jepson, D. Ketten, C.D. MacLeod, P. Miller, S. Moore, D. Moutain, D. Palka, P. Ponganis, S. Rommel, T. Rowles, B. Taylor, P. Tyack, D. Wartzok, R. Gisiner, J. Mead and L. Benner. 2006. Understanding the impacts of anthropogenic sound on beaked whales. J. Cetacean Res. Manage. 7:177–187.
- D'Amico, A., R.C. Gisiner, D.R. Ketten, J.A. Hammock, C. Johnson, P.L Tyack and J. Mead. 2009. Beaked whale strandings and naval exercises. Aq. Mamm. 35:452–472.
- Fernandez, A., J.F. Edwards, F. Rodriguez, A.E. de los Monteros, P. Herraez, P. Castro, J.R. Jaber, V. Martin and M. Arbelo. 2005. "Gas and Fat Embolic Syndrome" involving a mass stranding of beaked whales (Family Ziphiidae) exposed to anthropogenic sonar signals. Vet. Pathol. 42:446–457.
- Filadelfo, R., J. Mintz, E. Michlovich, A. D'Amico, P.L. Tyack and D.R. Ketten. 2009. Correlating military sonar use with beaked whale mass strandings: What do the historical data show? Aq. Mamm. 35:435–444.
- Frantzis, A. 1998. Does acoustic testing strand whales? Nature 392:29.
- Garrison, L.P. 2020. Abundance of cetaceans along the southeast U.S. east coast from a summer 2016 vessel survey. Southeast Fisheries Science Center, Protected Resources and Biodiversity Division, 75 Virginia Beach Dr., Miami, FL 33140. PRD Contribution # PRD-2020-04, 17 pp.
- Grieve, B.D., J.A. Hare and V.S. Saba. 2017. Projecting the effects of climate change on *Calanus finmarchicus* distribution within the US Northeast continental shelf. Sci. Rep. 7:6264.
- c Gomez, C., J.W. Lawson, A.J. Wright, A.D. Buren, D. Tollit and V. Lesage. 2016. A systematic review on the behavioural responses of wild marine mammals to noise: The disparity between science and policy. Can. J. Zool. 94:801–819.
- Hare, J.A., W.E. Morrison, M.W. Nelson, M.M. Stachura, E.J. Teeters, R.B. Griffis, M.A. Alexander, J.D. Scott, L. Alade, R.J. Bell, A.S. Chute, K.L. Curti, T.H. Curtis, D. Kurcheis, J.F. Kocik, S.M. Lucey, C.T. McCandless, L.M. Milke, D.E. Richardson, E. Robillard, H.J. Walsh, M.C. McManus, K.E. Maranick and C.A. Griswold. 2016. A vulnerability assessment of fish and invertebrates to climate change on the Northeast U.S. continental shelf, PLoS ONE 11:e0146756. https://doi.org/10.1371/journal.pone.0146756.s014.
- Hall, A.J., B.J. McConnell, L.J. Schwacke, G.M. Ylitalo, R. Williams and T.K. Rowles. 2018. Predicting the effects of polychlorinated biphenyls on cetacean populations through impacts on immunity and calf survival. Environ. Poll. 233:407–418.
- Head, E.J.H., and P. Pepin. 2010. Spatial and inter-decadal variability in plankton abundance and composition in the Northwest Atlantic (1958–2006). J. Plankton Res. 32:1633–1648.
- Hamazaki, T. 2002. Spatiotemporal prediction models of cetacean habitats in the mid-western North Atlantic Ocean (from Cape Hatteras, No. Carolina, USA to Nova Scotia, Canada). Mar. Mamm. Sci. 18:920–939.
- Hare, J.A., W.E. Morrison, M.W. Nelson, M.M. Stachura, E.J. Teeters, R.B. Griffis, M.A. Alexander, J.D. Scott, L. Alade, R.J. Bell, A.S. Chute, K.L. Curti, T.H. Curtis, D. Kurcheis, J.F. Kocik, S.M. Lucey, C.T. McCandless, L.M. Milke, D.E. Richardson, E. Robillard, H.J. Walsh, M.C. McManus, K.E. Maranick and C.A. Griswold. 2016. A vulnerability assessment of fish and invertebrates to climate change on the Northeast U.S. continental shelf, PLoS ONE 11:e0146756. https://doi.org/10.1371/journal.pone.0146756.s014.

- Hall, A.J., B.J. McConnell, L.J. Schwacke, G.M. Ylitalo, R. Williams and T.K. Rowles. 2018. Predicting the effects of polychlorinated biphenyls on cetacean populations through impacts on immunity and calf survival. Environ. Poll. 233:407–418.
- Head, E.J.H., and P. Pepin. 2010. Spatial and inter-decadal variability in plankton abundance and composition in the Northwest Atlantic (1958–2006). J. Plankton Res. 32:1633–1648.
- Jefferson, T.A., M.A. Webber and R.L. Pitman. 2008. Marine mammals of the world. Elsevier, Amsterdam, Netherlands. 573 pp.
- Jepson, P.D., R. Deaville, J.L. Barber, A. Aguilar, A. Borrell, S. Murphy, J. Barry, A. Brownlow, J. Barnett, S. Berrow and A.A. Cunningham. 2016. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Sci. Rep.-U.K. 6:18573.
- Laake, J. L., and D. L. Borchers. 2004. Methods for incomplete detection at distance zero. Pages 108-189 in: S.T. Buckland, D.R. Andersen, K.P. Burnham, J.L. Laake and L. Thomas (eds.), Advanced distance sampling. Oxford University Press, New York, New York.
- Leatherwood, S., D.K. Caldwell and H.E. Winn 1976. Whales, dolphins, and porpoises of the western North Atlantic. A guide to their identification. NOAA Tech. Rep. NMFS Circ. 396. 176 pp.
- Longhurst, A.R. 2007. Ecological geography of the sea, second edition. Elsevier Academic Press, Boston, Massachusetts. 560 pp.
- Lucas, Z.N., and S.K. Hooker. 2000. Cetacean strandings on Sable Island, Nova Scotia, 1970-1998. Can. Field-Nat. 114:46–61.
- MacLeod, C., W.F. Perrin, R. Pitman, J. Barlow, L. Ballance, A. D'Amico, T. Gerrodette, G. Joyce, K.D. Mullin, D. L. Palka and G.T. Waring. 2006. Known and inferred distributions of beaked whale species (Cetacea: Ziphiidae). J. Cetacean Res. Manage. 7:271–286.
- MacLeod, C.D. 2009. Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. Endang. Species Res. 7:125–136.
- Martín, V., A. Servidio and S. García. 2004. Mass strandings of beaked whales in the Canary Islands. ECS Newsletter 42:33–36.
- Mead, J.G. 1984. Survey of reproductive data for the beaked whales (*Ziphiidae*). Rep. Int. Whal. Comm. (Special Issue) 6:91–96.
- Mead, J.G. 1989. Beaked whales of the genus *Mesoplodon*. Pages 349-430 in: S.H. Ridgway and R. Harrison (eds.). Handbook of marine mammals, Vol. 4: River dolphins and the larger toothed whales. Academic Press, San Diego, California.
- Mignucci-Giannoni, A.A., B. Pinto-Rodríguez, M. Velasco-Escudero, R.A. Montoya-Ospina, N.M. Jiménez, M.A. Rodríguez-López, J.E.H. Williams and D.K. Odell. 1999. Cetacean strandings in Puerto Rico and the Virgin Islands. J. Cetacean Res. Manage. 1:191–198.
- Morley, J.W., R.L. Selden, R.J. Latour, T.L. Frolicher, R.J. Seagraves and M.L. Pinsky. 2018. Projecting shifts in thermal habitat for 686 species on the North American continental shelf. PLoS ONE 13(5):e0196127.
- Murphy, S., R.J. Law, R. Deaville, J.Barnett, M W. Perkins, A. Brownlow, R. Penrose, N.J. Davison, J.L. Barber P.D.
 Jepson. 2018. Organochlorine contaminants and reproductive implication in cetaceans: A case study of the common dolphin. Pages 3–38 *in* M.C. Fossi and C. Panti, (eds.) Marine mammal ecotoxicology:Impacts of multiple stressors on population health. Academic Press, New York, New York.
- Nawojchik, R. 1994. First record of *Mesoplodon densirostris* (Cetacea: Ziphiidae) from Rhode Island. Mar. Mamm. Sci. 10:477–480.
- NMFS [National Marine Fisheries Service]. 2001. Joint interim report on the Bahamas marine mammal stranding event of 15-16 March 2000 (December 2001). NOAA unpublished report. 55 pp. https://repository.library.noaa.gov/view/noaa/16198
- NMFS [National Marine Fisheries Service]. 2018. 2018 Revisions to: Technical guidance for assessing the effects of anthropogenic sound on marine mammal hearing (Version 2.0): Underwater thresholds for onset of permanent and temporary threshold shifts. NOAA Tech. Memo. NMFS-OPR-59, 167 pp. Available from: https://repository.library.noaa.gov/view/noaa/17892
- Northeast Fisheries Science Center (NEFSC) and Southeast Fisheries Science Center (SEFSC). 2018. Annual report of a comprehensive assessment of marine mammal, marine turtle, and seabird abundance and spatial distribution in US waters of the western North Atlantic Ocean. Northeast Fish. Sci. Cent. Ref. Doc. 18-04. 141 pp. Available at: <u>https://www.fisheries.noaa.gov/resource/publication-database/atlantic-marineassessment-program-protected-species</u>.

- Nowacek, D.P., C.W. Clark, D. Mann, P.J.O. Miller, H.C. Rosenbaum, J.S. Golden, M. Jasny, J. Kraska and B.L. Southall. 2015. Marine seismic surveys and ocean noise: time for coordinated and prudent planning. Front. Ecol. Environ. 13:378–386.
- Nye, J., J. Link, J. Hare and W. Overholtz. 2009. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393:111–129.
- Palka, D.L. 2006. Summer abundance estimates of cetaceans in US North Atlantic Navy Operating Areas. Northeast Fish. Sci. Cent. Ref. Doc. 06-03. 41 pp. <u>https://repository.library.noaa.gov/view/noaa/5258</u>
- Palka, D.L. 2012. Cetacean abundance estimates in US northwestern Atlantic Ocean waters from summer 2011 line transect survey. Northeast Fish. Sci. Cent. Ref. Doc. 12-29. 37 pp. https://repository.library.noaa.gov/view/noaa/4312
- Palka, D. 2020. Cetacean abundance estimates in US northwestern Atlantic Ocean waters from summer 2016 line transect surveys conducted by the Northeast Fisheries Science Center. Northeast Fish. Sci. Cent. Ref. Doc. 20-05.
- Pierce, G.J. M.B. Santos, S. Murphy, J.A. Learmonth, A.F. Zuur, E. Rogan, P. Bustamante, F. Caurant, V. Lahaye, V. Ridoux, B.N. Zegers, A. Mets, M. Addink, C. Smeenk, T. Jauniaux, R.J. Law, W. Dabin, A. López, J.M. Alonso Farré, A.F. González, A. Guerra, M. García-Hartmann, R.J. Reid, C.F. Moffat, C. Lockyer, J.P. Boon. 2008. Bioaccumulation of persistent organic pollutants in female common dolphins (*Delphinus delphis*) and harbour porpoises (*Phocoena phocoena*) from western European seas: Geographical trends, causal factors and effects on reproduction and mortality. Environmental Pollution. 153:401–415.
- Pinsky, M.L., B. Worm, M.J. Fogarty, J.L. Sarmiento and S.A. Levin. 2013. Marine taxa track local climate velocities. Science 341:1239–1242.
- Poloczanska, E.S., C.J. Brown, W.J. Sydeman, W. Kiessling, D.S. Schoeman, P.J. Moore, K. Brander, J.F. Bruno, L.B. Buckley, M.T. Burrows, C.M. Duarte, B.S. Halpern, J. Holding, C.V. Kappel, M.I. O'Connor, J.M. Pandolfi, C. Parmesan, F. Schwing, S.A. Thompson and A.J. Richardson. 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3:919–925.
- Simmonds, M.P., and L.F. Lopez-Jurado. 1991. Whales and the military. Nature 351:448.
- Sousa, A., F. Alves, A. Dinis, J. Bentz, M.J. Cruz and J.P. Nunes. 2019. How vulnerable are cetaceans to climate change? Developing and testing a new index. Ecol. Indic. 98:9–18.
- Spalding, M.D., H.E. Fox, G.R. Allen, N. Davidson, Z.A. Ferdaña, M. Finlayson, B.S. Halpern, M.A. Jorge, A. Lombana, S.A. Lourie, K.D. Martin, E. McManus, J. Molnar, C.A. Recchia and J. Robertson. 2007. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57:573–583.
- Taylor, B.L., M. Martinez, T. Gerrodette, J. Barlow and Y.N. Hrovat. 2007. Lessons from monitoring trends in abundance in marine mammals. Mar. Mamm. Sci. 23:157–175.
- Tove, M. 1995. Live sighting of Mesoplodon cf. M. mirus, True's beaked whale. Mar. Mamm. Sci. 11:80-85.
- Wade, P.R., and R.P. Angliss 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. 93 pp.
- Waring, G.T., C.P. Fairfield, C. M. Ruhsam and M. Sano 1992. Cetaceans associated with Gulf Stream features off the northeastern USA Shelf. Unpublished meeting document ICES C.M. 1992/N:12. International Council for the Exploration of the Sea, Copenhagen, Denmark. ?? pp.
- Waring, G.T., T. Hamazaki, D. Sheehan, G. Wood and S. Baker. 2001. Characterization of beaked whale (*Ziphiidae*) and sperm whale (*Physeter macrocephalus*) summer habitat in shelf-edge and deeper waters off the northeast U.S. Mar. Mamm. Sci. 17:703–717.