HARBOR PORPOISE (*Phocoena phocoena*): Northern California/Southern Oregon Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

In the Pacific, harbor porpoise are found in coastal and inland waters from Point Conception, California to Alaska and across to Kamchatka and Japan (Gaskin 1984). Harbor porpoise appear to have more restricted movements along the western coast of the continental U.S. than along the eastern coast. Regional differences in pollutant residues in harbor porpoise indicate that they do not move extensively between California, Oregon, and Washington (Calambokidis and Barlow 1991). That study also showed regional differences within California (although the sample size was small). This pattern stands as a sharp contrast to the eastern coast of the U.S. and Canada where harbor porpoise are believed to migrate seasonally from as far south as the Carolinas to the Gulf of Maine and Bay of Fundy (Polacheck et al. 1995).

A phylogeographic analysis of genetic data from northeast Pacific harbor porpoise did not show complete concordance between DNA sequence types and geographic location (Rosel 1992). However, an analysis of molecular variance (AMOVA) of the same data with additional samples found significant genetic differences for four of the six pair-wise comparisons between the four areas investigated: California, Washington, British Columbia, and Alaska (Rosel et al. 1995). These results demonstrate that harbor porpoise along the west coast of North America are not panmictic or migratory, and movement is sufficiently restricted that genetic differences have evolved. Subsequent genetic analyses of samples ranging from Monterey Bay, California to Vancouver Island, British Columbia indicate that there is small-scale subdivision within the U.S. portion of this range (Chivers et al., 2002, 2007).

In their assessment of harbor porpoise, Barlow and Hanan (1995) recommended that the animals inhabiting central California (defined to be from Point Conception to the Russian River) be treated as a separate stock. Their justifications for this were: 1) fishery mortality of harbor porpoise was limited to central California, 2) movement of individual animals appears to be restricted within California, and consequently 3) fishery mortality could cause the local depletion of harbor porpoise if central California is not managed separately. Although geographic structure exists along an almost continuous distribution of harbor porpoise from California to Alaska, stock boundaries are difficult to draw because any rigid line is (to a greater or lesser extent) arbitrary from a biological perspective. Nonetheless, failure to recognize geographic structure by defining management stocks can lead to depletion of local populations. Based on more recent genetic findings (Chivers et al., 2002, 2007), California coast stocks were re-evaluated and significant genetic differences were found.
differences were found among four identified sampling sites. Revised stock boundaries were identified based on these genetic data and density discontinuities identified from aerial surveys (Figure 1). For the Marine Mammal Protection Act (MMPA) Stock Assessment Reports, Pacific coast harbor porpoise stocks include: 1) a Morro Bay stock, 2) a Monterey Bay stock, 3) a San Francisco-Russian River stock, 4) a northern Oregon/Washington coast stock, 5) an Inland Washington stock, 6) a Southeast Alaska stock, 7) a Gulf of Alaska stock, and 8) a Bering Sea stock. The stock assessment reports for harbor porpoise stocks within waters of California, Oregon, and Washington appear in this volume. The three Alaska harbor porpoise stocks are reported separately in the Stock Assessment Reports for the Alaska Region.

POPULATION SIZE

Previous estimates of abundance for California harbor porpoise were based on aerial surveys conducted between the coast and the 50-fm isobath during 1988-95 (Barlow and Forney 1994, Forney 1999). These estimates did not include an unknown number of animals found in deeper waters. Barlow (1988) found that the vast majority of harbor porpoise in California were within the 0-50-fm depth range; however, Green et al. (1992) found that 24% of harbor porpoise seen during aerial surveys of Oregon and Washington were between the 100m and 200m isobaths (55 to 109 fathoms). A systematic ship survey of depth strata out to 90 m in northern California showed that porpoise abundance declined significantly in waters deeper than 60 m (Carretta et al. 2001). Since 1999, aerial surveys extended farther offshore (to the 200m depth contour or 15 nmi distance, whichever is farther) to provide a more complete abundance estimate (Forney et al. 2014). A recent analysis of long-term trends in the northern California portion of this harbor porpoise stock between 1989 and 2016 (Forney et al. 2019) estimated a northern California population size of 11,670 (CV=0.659) porpoises during 2016. These estimates include a correction factor of 3.42 (1/g(0); g(0)=0.292, CV=0.366) (Laake et al. 1997), to adjust for groups missed by aerial observers. The most recent estimate available for the entire northern California/southern Oregon stock is the sum of the 2016 California estimate of 11,670 (Forney et al. 2019), plus the 2007-2011 southern Oregon estimate of 12,525 (CV = 0.48; Forney et al. 2014), totaling 24,195 (CV = 0.40).

Minimum Population Estimate

The minimum population estimate for harbor porpoise in northern California/southern Oregon is taken as the lower 20th percentile of the log-normal distribution of the abundance estimate given above, or 17,447 animals.

Current Population Trend

A hierarchical Bayesian analysis of harbor porpoise trends for the northern California portion of this stock between 1989 and 2016 (Forney et al. 2019) suggests largely stable population during this period, although there is considerable uncertainty in the estimates because of limited survey coverage (Figure 2). No trend estimates are available for the entire northern California/southern Oregon range of this stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

Based on what are argued to be biological limits of the species (i.e. females give birth first at age 4 and produce one calf per year until death), the theoretical, maximum-conceivable growth rate of a closed harbor porpoise population was estimated as 9.4% per year based on a human survivorship curve (Barlow and Boveng 1991). This maximum theoretical rate represents maximum survival in a protected environment and may not be achievable for any wild population (Barlow and Boveng...
Woodley and Read (1991) calculate a maximum growth rate of approximately 5% per year, but their argument for this being a maximum (i.e. that porpoise survival rates cannot exceed those of Himalayan thar) is not well justified. Because a reliable estimate of the maximum net productivity rate is not available for this harbor porpoise stock, we use the default maximum net productivity rate (R_{MAX}) of 4% for cetaceans (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (17,447) times one half the default maximum net growth rate for cetaceans (½ of 4%) times a recovery factor of 1.0 (for a species within its Optimal Sustainable Population; see Status of Stock section; Wade and Angliss 1997), resulting in a PBR of 349.

HUMAN-CAUSED MORTALITY

Fishery Information

There were no harbor porpoise strandings in this stock’s range with evidence of fishery interactions during 2013-2017.

Table 1. Summary of available information on incidental mortality and injury of harbor porpoise (northern California/southern Oregon stock) in commercial fisheries that might take this species during 2013-2017 (Carretta et al. 2019). n/a indicates that data are not available.

<table>
<thead>
<tr>
<th>Fishery Name</th>
<th>Year(s)</th>
<th>Data Type</th>
<th>Percent Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality (CV in parentheses)</th>
<th>Mean Annual Takes (CV in parentheses)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown fishery</td>
<td>2013-2017</td>
<td>Stranding</td>
<td>n/a</td>
<td>none</td>
<td>n/a</td>
<td>0 (n/a)</td>
</tr>
<tr>
<td>Minimum total annual takes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 (n/a)</td>
</tr>
</tbody>
</table>

Other Mortality

One harbor porpoise stranded with evidence of a fatal vessel strike during 2014 off Coos Bay, Oregon (Carretta et al. 2019), resulting in an average of ≥ 0.2 non-fishery, human-caused harbor porpoise deaths per year.

STATUS OF STOCK

Harbor porpoise in northern California/southern Oregon are not listed as threatened or endangered under the Endangered Species Act nor as depleted under the Marine Mammal Protection Act. The northern California portion of this harbor porpoise stock was determined to be within their Optimum Sustainable Population (OSP) level in the mid-1990s (Barlow and Forney 1994), based on a lack of significant anthropogenic mortality. Because the known human-caused mortality or serious injury (≥ 0.2 harbor porpoise per year) is less than the PBR (349), this stock is not considered a "strategic" stock under the MMPA, and fishery mortality can be considered insignificant and approaching zero mortality and serious injury rate. Harbor porpoises are sensitive to disturbance by a variety of anthropogenic sound sources, and the limited range of several U.S. West Coast harbor porpoise stocks makes them particularly vulnerable to potential impacts (see overview in Forney et al. 2017). A recent habitat concern along the U.S. West coast includes the use of acoustic deterrent devices (‘seal bombs’) that are used in commercial fishing activities off California (Simonis et al. 2020), especially in the Monterey Bay region.

REFERENCES

