SEI WHALE (Balaenoptera borealis borealis): Nova Scotia Stock #### STOCK DEFINITION AND GEOGRAPHIC RANGE Mitchell and Chapman (1977) reviewed the sparse evidence on stock identity of northwest Atlantic sei whales, and suggested two stocks-a Nova Scotia stock and a Labrador Sea stock. The range of the Nova Scotia stock includes the continental shelf waters of the northeastern U.S., and extends northeastward to south of Newfoundland. The Scientific Committee of the International Whaling Commission (IWC), while adopting these general boundaries, noted that the stock identity of sei whales (and indeed all North Atlantic whales) was a major research problem (Donovan 1991). In the absence of evidence to the contrary, the proposed IWC stock definition is provisionally adopted, and the "Nova Scotia stock" is used here as the management unit for this stock assessment. The IWC boundaries for this stock are from the U.S. east coast to Cape Breton, Nova Scotia, thence east to longitude 42° W. Indications are that, at least during the feeding season, a major portion of the Nova Scotia sei whale stock is centered in northerly waters, perhaps on the Scotian Shelf (Mitchell and Chapman 1977). The southern portion of the species' range during spring and summer includes the northern portions of the U.S. Atlantic Exclusive Economic Zone (EEZ)—the Gulf of Maine and Georges Bank. Spring is the period of greatest abundance in U.S. waters, with sightings concentrated along the eastern margin of Georges Bank and into the Northeast Channel area, and along the southwestern edge of Georges Bank in the area of Hydrographer Canyon (CETAP 1982). NMFS aerial surveys from 1999 on have found concentrations of sei and right whales along the northern edge of Georges Bank in the spring. The sei whale is often found in the deeper waters characteristic of the **Figure 1**. Distribution of sei whale sightings from NEFSC and SEFSC shipboard and aerial surveys during the summers of 1995, 1998, 1999, 2002, 2004, 2006, 2007, 2008, 2010 and 2011. Isobaths are the 100-m, 1000-m and 4000-m depth contours. continental shelf edge region (Hain *et al.* 1985), and NMFS aerial surveys found substantial numbers of sei whales in this region, in particular south of Nantucket, in the spring of 2001. Similarly, Mitchell (1975) reported that sei whales off Nova Scotia were often distributed closer to the 2,000-m depth contour than were fin whales. This general offshore pattern of sei whale distribution is disrupted during episodic incursions into shallower, more inshore waters. Although known to eat fish, sei whales (like right whales) are largely planktivorous, feeding primarily on euphausiids and copepods (Flinn *et al.* 2002). A review by prey preferences by Horwood (1987) showed that in the North Atlantic sei whales seem to prefer copepods over all other prey species. In Nova Scotia sampled stomachs from captured sei whales showed a clear preference for copepods between June and October, and euphausiids were taken only in May and November (Mitchell 1975). Sei whales are reported in some years in more inshore locations, such as the Great South Channel (in 1987 and 1989) and Stellwagen Bank (in 1986) areas (R.D. Kenney, pers. comm.; Payne *et al.* 1990). An influx of sei whales into the southern Gulf of Maine occurred in the summer of 1986 (Schilling *et al.* 1993). Such episodes, often punctuated by years or even decades of absence from an area, have been reported for sei whales from various places worldwide (Jonsgård and Darling 1977). Based on analysis of records from the Blandford, Nova Scotia, whaling station, where 825 sei whales were taken between 1965 and 1972, Mitchell (1975) described two "runs" of sei whales, in June-July and in September-October. He speculated that the sei whale population migrates from south of Cape Cod and along the coast of eastern Canada in June and July, and returns on a southward migration again in September and October; however, such a migration remains unverified. #### POPULATION SIZE The summer 2011 abundance estimate of 357 (CV=0.52) is considered the best available for the Nova Scotia stock of sei whales. However, this estimate must be considered conservative because all of the known range of this stock was not surveyed, and because of uncertainties regarding population structure and whale movements between surveyed and unsurveyed areas. ## **Earlier abundance estimates** Please see appendix IV for earlier abundance estimates. As recommended in the GAMMS Workshop Report (Wade and Angliss 1997), estimates older than eight years are deemed unreliable and should not be used for PBR determinations. # Recent surveys and abundance estimates An abundance estimate of 207 (CV=0.62) sei whales was obtained from an aerial survey conducted in August 2006, which covered 10,676 km of trackline in the region from the 2000-m depth contour on the southern edge of Georges Bank to the upper Bay of Fundy and to the entrance of the Gulf of St. Lawrence (Table 1; Palka pers. comm.). The value of $g(\theta)$ used for this estimation was derived from the pooled 2002, 2004 and 2006 aerial survey data An abundance estimate of 357 (CV=0.52) sei whales was generated from a shipboard and aerial survey conducted during June–August 2011 (Palka 2012). The aerial portion that contributed to the abundance estimate covered 5,313 km of tracklines that were over waters from north of New Jersey from the coastline to the 100-m depth contour, through the U.S. and Canadian Gulf of Maine and up to and including the lower Bay of Fundy. The shipboard portion covered 3,107 km of tracklines that were in waters offshore of Virginia to Massachusetts (waters that were deeper than the 100-m depth contour out to beyond the U.S. EEZ). Both sighting platforms used a double-platform data collection procedure, which allows estimation of abundance corrected for perception bias of the detected species (Laake and Borchers 2004). Estimation of the abundance was based on the independent observer approach assuming point independence (Laake and Borchers 2004) and calculated using the multiple covariate distance sampling (MCDS) option in the computer program Distance (version 6.0, release 2, Thomas *et al.* 2009). The abundance estimates of sei whales include a percentage of the estimate of animals identified as fin/sei whales (the two species being sometimes hard to distinguish). The percentage used is the ratio of positively identified sei whales to the total of positively identified fin whales and positively identified sei whales; the CV of the abundance estimate includes the variance of the estimated fraction. Table 1. Summary of recent abundance estimates for Nova Scotia sei whales with month, year, and area covered during each abundance survey, and resulting abundance estimate (N_{best}) and coefficient of variation (CV). | Month/Year | Area | N _{best} | CV | |--------------|--|-------------------|------| | Aug 2006 | S. Gulf of Maine to upper Bay of Fundy to Gulf of St. Lawrence | 207 | 0.62 | | Jun-Aug 2011 | Central Virginia to lower Bay of Fundy | 357 | 0.52 | # **Minimum Population Estimate** The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by (Wade and Angliss 1997). The best estimate of abundance for the Nova Scotia stock sei whales is 357 (CV=0.52). The minimum population estimate is 236. #### **Current Population Trend** A trend analysis has not been conducted for this stock. The statistical power to detect a trend in abundance for this stock is poor due to the relatively imprecise abundance estimates and long survey interval. For example, the power to detect a precipitous decline in abundance (i.e., 50% decrease in 15 years) with estimates of low precision (e.g., CV > 0.30) remains below 80% (alpha = 0.30) unless surveys are conducted on an annual basis (Taylor *et al.* 2007). # **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** Current and maximum net productivity rates are unknown for this stock. For purposes of this assessment, the maximum net productivity rate was assumed to be 0.04. This value is based on theoretical modeling showing that cetacean populations may not grow at rates much greater than 4% given the constraints of their reproductive life history (Barlow *et al.* 1995). ## POTENTIAL BIOLOGICAL REMOVAL Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate, and a recovery factor (MMPA Sec. 3. 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 236. The maximum productivity rate is 0.04, the default value for cetaceans. The recovery factor, which accounts for endangered, depleted, threatened stocks, or stocks of unknown status relative to optimum sustainable population (OSP) is assumed to be 0.10 because the sei whale is listed as endangered under the Endangered Species Act (ESA). PBR for the Nova Scotia stock of the sei whale is 0.5. #### ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY For the period 2008 through 2012, the minimum annual rate of human-caused mortality and serious injury to sei whales was 0.8. This value includes incidental fishery interaction records, 0.4, and records of vessel collisions, 0.4 (Table 2; Henry *et al.* 2014; Cole and Henry 2015). Annual rates calculated from detected mortalities should not be considered an unbiased estimate of human-caused mortality, but they represent a definitive lower bound. Detections are haphazard, incomplete and not the result of a designed sampling scheme. As such they represent a minimum estimate of human-caused mortality which is almost certainly biased low. # **New Serious Injury Guidelines** NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998; Andersen *et al.* 2008; NOAA 2012). NMFS defines serious injury as an "*injury that is more likely than not to result in mortality*". All injury determinations for this stock assessment were performed under the new guidelines. The new process involves proration of serious injury determinations where there is uncertainty regarding the severity or cause. ## Fishery-Related Serious Injury and Mortality No confirmed fishery-related mortalities or serious injuries of sei whales have been reported in the NMFS Sea Sampling bycatch database. A review of the records of stranded, floating or injured sei whales for the period 2008 through 2012 on file at NMFS found 2 records with substantial evidence of fishery interactions causing serious injury or mortality (Table 2), which results in an annual serious injury and mortality rate of 0.4 sei whales from fishery interactions. Table 2. Confirmed human-caused mortality records of Sei Whales (*Balaenoptera borealis*) where the cause was assigned as either an entanglement (EN) or a vessel strike (VS): 2008-2012 ^a | Date ^b | Injury
Determination | ID | Location ^b | Assigned
Cause | Value
against
PBR ^c | Country ^d | Gear
Type ^e | Description | |-------------------|-------------------------|----|---------------------------------|-------------------|--------------------------------------|----------------------|---------------------------|--| | 4/9/2008 | Serious Injury | | 51 nm E
of
Chatham,
MA | EN | 1 | XU | NR | Constricting gear and health decline (sloughing skin). | | 6/29/2008 | Mortality | | Slack's
Cove, NB | EN | 1 | CN | NP | Extensive entanglement evident. | | 5/19/2009 | Mortality | | off
Rehobeth
Beach,
DE | VS | 1 | US | - | Posterior portion of skull & right mandible fractured. Hemorrhaging dorsal to left Pectoral. | |----------------------|-----------|----------------------------|---------------------------------|--------------------------------|---|----|---|--| | 3/26/2011 | Mortality | | Virginia
Beach,
VA | VS | 1 | US | 1 | Jaw, scapula, rib & vertebral fractures along right side w/ associated hemorrhaging. | | | | Shipstrike (US/CN/XU/XC) | | 0.40 (0.40/ 0.00/ 0.00/ 0.00) | | | | | | Five-year averages I | | Entanglement (US/CN/XU/XC) | | 0.40 (0.00/ 0.20/ 0.20/ 0.00) | | | | | a. For more details on events please see Henry et al. 2014 and Cole and Henry 2015. - d. CN=Canada, US=United States, XC=Unassigned 1st sight in CN, XU=Unassigned 1st sight in US - e. H=hook, GN=gillnet, GU=gear unidentifiable, MF=monofilament, NP=none present, NR=none recovered/received, PT=pot/trap, WE=weir # **Other Mortality** For the period 2008 through 2012 files at NMFS included two records with substantial evidence of vessel collisions causing serious injury or mortality (Table 2), which results in an annual rate of serious injury and mortality of 0.4 sei whales from vessel collisions. #### STATUS OF STOCK This is a strategic stock because the average annual human-related mortality and serious injury exceeds PBR, and because the sei whale is listed as an endangered species under the ESA. A final recovery plan for the sei whale was published in 2011 (NMFS 2011). The total U.S. fishery-related mortality and serious injury for this stock derived from the available records is not less than 10% of the calculated PBR, and therefore cannot be considered insignificant and approaching a zero mortality and serious injury rate. The status of this stock relative to OSP in the U.S. Atlantic EEZ is unknown. There are insufficient data to determine population trends for sei whales. # REFERENCES CITED - Andersen, M. S., K. A. Forney, T. V. N. Cole, T. Eagle, R. Angliss, K. Long, L. Barre, L. Van Atta, D. Borggaard, T. Rowles, B. Norberg, J. Whaley and L. Engleby. 2008. Differentiating serious and non-serious injury of marine mammals: Report of the serious injury technical workshop. NOAA Tech. Memo. NMFS-OPR-39 94 pp. - Angliss, R.P. and D.P. DeMaster. 1998. Differentiating serious and non-serious injury of marine mammals taken incidental to commercial fishing operations: Report of the serious injury workshop, 1-2 April 1997, Silver Spring, MD. NOAA Tech. Memo. NMFS-OPR-13. 48 pp. - Barlow, J., S.L. Swartz, T.C. Eagle and P.R. Wade. 1995. U.S. marine mammal stock assessments: Guidelines for preparation, background, and a summary of the 1995 assessments. NOAA Tech. Memo. NMFS-OPR-6. 73 pp. - CETAP 1982. A characterization of marine mammals and turtles in the mid- and north Atlantic areas of the U.S. b. The date sighted and location provided in the table are not necessarily when or where the serious injury or mortality occurred; rather, this information indicates when and where the whale was first reported beached, entangled, or injured. c. Mortality events are counted as 1 against PBR. Serious injury events have been evaluated using NMFS guidelines (NOAA 2012) - outer continental shelf, final report. Bureau of Land Management, Washington, DC. #AA551-CT8-48. 538 pp. - Cole, T.V.N. and A.G. Henry 2015. Serious injury determinations for baleen whale stocks along the Gulf of Mexico, United States East Coast and Atlantic Canadian Provinces, 2008-2012, NEFSC Reference Document 15--5. 43 pp. http://nefsc.noaa.gov/publications/crd/crd/505/ - Donovan, G.P. 1991 A review of IWC stock boundaries. Rep. Int. Whal. Comm. (Special Issue) 13: 39-68. - Flinn, R.D., A.W. Trites and E.J. Gregr. 2002. Diets of fin, sei, and sperm whales in British Columbia: An analysis of commercial whaling records, 1963-1967. Mar. Mamm Sci. 18(3): 663-679. - Hain, J.H.W., M.A. Hyman, R.D. Kenney and H.E. Winn. 1985. The role of cetaceans in the shelf-edge region of the northeastern United States. Mar. Fish. Rev. 47(1): 13-17. - Henry, A.G., T.V.N. Cole, L. Hall, W. Ledwell, D. Morin and A. Reid. 2014. Mortality determinations for baleen whale stocks along the Gulf of Mexico, United States East Coast and Atlantic Canadian Provinces, 2008-2012, NEFSC Reference Document 14-10. 17 pp. http://nefsc.noaa.gov/publications/crd/crd1410/ - Jonsgård, Å. and K. Darling. 1977. On the biology of the eastern North Atlantic sei whale, *Balaenoptera borealis* Lesson. Rep. Int. Whal. Comm. (Special Issue) 1: 124-129. - Laake, J.L. and D.L. Borchers. 2004. Methods for incomplete detection at distance zero, Pages 108-189 *in*: Advanced distance sampling, S.T. Buckland, D.R. Andersen, K.P. Burnham, J.L. Laake, and L. Thomas, (eds.), Oxford University Press, New York. - Lawson, J.W. and J.-F. Gosselin. 2009. Distribution and preliminary abundance estimates for cetaceans seen during Canada's Marine Megafauna Survey A component of the 2007 TNASS. Can. Sci. Advisory Sec. Res. Doc. 2009/031. 33 pp. - Mitchell, E. 1975. Preliminary report on Nova Scotia fishery for sei whales (*Balaenoptera borealis*). Rep. Int. Whal. Comm. 25: 218-225. - Mitchell, E. and D.G. Chapman 1977. Preliminary assessment of stocks of northwest Atlantic sei whales (*Balaenoptera borealis*). Rep. Int. Whal. Comm. (Special Issue) 1: 117-120. - National Marine Fisheries Service 2011. Final recovery plan for the sei whale (*Balaenoptera borealis*), National Marine Fisheries Service, Office of Protected Resources, Silver Spring, MD. 107 pp. - NOAA 2012. National Policy for Distinguishing Serious From Non-Serious Injuries of Marine Mammals. Federal Register 77:3233. http://www.nmfs.noaa.gov/op/pds/documents/02/238/02-238-01.pdf - Palka, D.L. 2012. Cetacean abundance estimates in US northwestern Atlantic Ocean waters from summer 2011 line transect survey. Northeast Fish. Sci. Cent. Ref. Doc. 12-29. 37 pp. http://www.nefsc.noaa.gov/nefsc/publications/crd/crd/229/ - Payne, P.M., D.N. Wiley, S.B. Young, S. Pittman, P.J. Clapham and J.W. Jossi. 1990. Recent fluctuations in the abundance of baleen whales in the southern Gulf of Maine in relation to changes in selected prey. Fish. Bull. 88: 687-696. - Schilling, M.R., I. Seipt, M.T. Weinrich, S.E. Frohock, A.E. Kuhlberg and P.J. Clapham. 1993. Behavior of individually identified sei whales, *Balaenoptera borealis*, during an episodic influx into the southern Gulf of Maine in 1986. Fish. Bull. 90(4): 749-755. - Taylor, B.L., M. Martinez, T. Gerrodette, J. Barlow and Y.N. Hrovat. 2007. Lessons from monitoring trends in abundance in marine mammals. Mar. Mamm. Sci. 23(1): 157-175. - Thomas L, J.L. Laake, E. Rexstad, S. Strindberg, F.F.C. Marques, S.T. Buckland, D.L. Borchers, D.R. Anderson, K.P. Burnham, M.L. Burt, S.L. Hedley, J.H. Pollard, J.R.B. Bishop and T.A. Marques. 2009. Distance 6.0. Release 2. [Internet]. University of St. Andrews (UK): Research Unit for Wildlife Population Assessment. Available from: http://www.ruwpa.st-and.ac.uk/distance/ - Wade, P.R. and R.P. Angliss. 1997. Guidelines for assessing marine mammal stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. NOAA Tech. Memo. NMFS-OPR-12. 93 pp.