

UNITED STATES DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration

National Marine Fisheries Service P.O. Box 21668 Juneau, Alaska 99802-1668

April 5, 2012

MEMORANDUM FOR: William W. Stelle, Jr. Administrator, Northwest Region Balsiger, Ph.D. FROM: ninistrator, Alaska Region

SUBJECT:

2011 Annual Report for the Alaska Groundfish Fisheries Chinook Salmon Incidental Catch and Endangered Species Act Consultation

We are providing to you the 2011 annual report on salmon incidental catch in the Alaska groundfish fisheries. This report fulfills one of the terms and conditions of the December 2, 2009, and the January 11, 2007, supplements to the November 30, 2000, Biological Opinion (BiOp) regarding Authorization of the Bering Sea/Aleutian Islands (BSAI) and Gulf of Alaska (GOA) Groundfish Fisheries. In addition, a supplemental Biological Opinion was issued on January 9, 2012, on the reinitiation of Endangered Species Act (ESA) section 7 consultation on incidental catches of Chinook salmon in the GOA groundfish fisheries, which concluded that the GOA groundfish fisheries are not likely to jeopardize the continued existence of the listed salmon Evolutionarily Significant Units (ESUs). This memorandum and attachments provide the latest information regarding salmon incidental catch in the Alaska groundfish fisheries and the progress on developing management measures to reduce the take of salmon in the GOA wire Tag (CWT) recoveries, genetic studies, and the development and implementation of new management measures to reduce salmon incidental catch in the Bering Sea and GOA pollock fisheries. Each issue is detailed below.

Incidental Catch of Salmon in the Alaska Fisheries and the Incidental Take Statement for Chinook Salmon

The amount of Chinook salmon incidental catch in the Alaska groundfish fisheries in 2011 was below the incidental take statement amounts for both the BSAI and GOA groundfish fisheries. Attachment 1 provides updated sector specific information regarding salmon incidental catch in the BSAI and GOA groundfish fisheries for the years 2004 through December 31, 2011. Approximately 90% of this incidental catch occurred in the pollock pelagic trawl fishery.

The amount of Chinook salmon incidental catch in the BSAI groundfish fisheries in 2011 is estimated at 26,672 fish (Attachment 2) This table provides data from 1991 to present. The numbers in tables may vary slightly because of the time when data was accessed for generating the tables. The Catch Accounting System is a dynamic system that is continuously being updated. The BSAI fishery incidental take amount for 2011 was revised in accordance with Amendment 91 (NMFS 2009a) as a result of the 2009 supplemental BiOp specifications. For the GOA groundfish fisheries in 2011, the estimated incidental catch of Chinook salmon was estimated at 20,733 fish (Attachment 2). This is below the incidental take statement of 40,000 fish in the 2012 supplemental BiOp.

Observer Program Bycatch Sampling

The North Pacific Groundfish Observer Program (Observer Program) is responsible for the collection of fisheries data used by managers for stock assessment and inseason monitoring of the commercial groundfish fisheries occurring in federal waters off Alaska. Fisheries data collected by observers deployed on commercial vessels provides the best available scientific information for managing fisheries and developing measures to minimize incidentally caught species, including salmon. Data collected by observers are used by managers to monitor quotas, manage groundfish and prohibited species catch, and document interactions with protected resources. The methods used to estimate the number of incidentally caught salmon in the Alaska federal groundfish fisheries vary by area and fishery.

Observers are deployed in the field for up to three months at a time and debrief with Fisheries Monitoring and Analysis Division (FMA) staff following their deployment. The data are not finalized until all observers return from the field for debriefing and their data are scrutinized following FMA quality control protocols. Generally, the observer data are finalized in late February to early March of the year following the fishery. Any catch information provided on 2011 is preliminary until the observer data are finalized after the fishing year is completed.

BSAI Non-pollock Fishery Sampling and Data Collection

The non-pollock fisheries in the BSAI, such as flatfish and Pacific cod trawl, contribute a smaller number of incidentally caught salmon in comparison to the Bering Sea pollock fishery. In these fisheries, the total number of incidentally caught salmon was obtained by using vessel observer at-sea species composition samples that are extrapolated to the vessel's total catch. Sampling protocols for observers in these non-pollock fisheries are different than those in the pollock fishery, and genetic tissue samples are not required to be collected. However, all salmon species encountered in the randomly collected at-sea species composition samples are checked for missing adipose fins indicating a potential CWT, and scale samples are collected to verify species identification.

In BSAI non-pollock fisheries in 2011, observers measured a total of 3 Chinook and 2 chum salmon of which none were missing an adipose fin (Table 1).

Bering Sea Pollock Fishery Sampling and Data Collection

The Bering Sea pollock fishery is one of the most heavily observed fleets in the nation. In August 2010, NMFS published regulations implementing Amendment 91 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area (75 FR 53026). These regulations, effective January 1, 2011, require 100% observer coverage in the Bering Sea pollock fisheries regardless of vessel length, a census of all salmon species in every haul or fishing trip, and an expanded biological sampling program. Also, NMFS requires shoreside processors to provide a location from which the observer is able to view all sorting and weighing of fish, as well the storage area for salmon. A new sampling protocol for Chinook salmon in the Bering Sea pollock fishery was initiated at the start of the 2011 fishing year. This protocol was designed to conform with recommendations provided in Pella and Geiger (2009). This new protocol includes a complete census of salmon bycatch in the pollock fishery which is then sampled systematically by observers. On catcher processors and motherships, the vessel personnel are required to save all salmon in an approved storage container until the end of the haul, and electronic monitoring systems are used to ensure compliance with this rule. Before the start of the next haul, the observers count and identify every salmon retained. Observers implement a systematic sampling design for the identified Chinook and chum salmon by selecting every 10th Chinook and every 30th chum encountered. The selected fish are used to obtain a length measurement, a genetic tissue sample, and five scales to verify species identification. These fish are also checked for a missing adipose fin, indicating a potential CWT.

Chinook and chum salmon that are not selected using the systematic sample design are identified to species and counted but no additional biological data are collected. All other salmon species are identified, measured, counted, and checked for a missing adipose fin. Additionally, a separate scale collection is collected to verify the observer's identification skills.

Catcher vessel observers check every salmon encountered in their randomly collected at-sea composition samples for missing adipose fins and collect a scale sample to verify species identification. The catcher vessel observers monitor that no salmon are discarded at sea to the best of their ability. Total retained salmon numbers and related genetics samples are obtained from catcher vessel pollock deliveries at the processing facility.

Once the catch is delivered to the processing facility, the plant and vessel observers monitor the entire offload to ensure that all retained salmon are sorted and placed in an approved salmon storage container. The observers collect total salmon numbers and associated biological specimens following the same procedure outlined above for catcher processors and motherships.

In the 2011 Bering Sea pollock fishery, 2,591 Chinook and 6,691chum salmon were measured for length. Of these fish, 2,513 Chinook and 6,105 chum were sampled for genetic tissue (Table 1). In addition, 13 Chinook, 3 chum, and 2 coho salmon were missing their adipose fin, and their heads were shipped to the Auke Bay Laboratories (Auke Bay Lab) to be scanned for CWT presence and analysis. It is important to note that every biological specimen such as genetic tissue samples or scale samples is associated with a length. For this reason the total number of lengths is expected to exceed the total number of any biological specimen.

Area/fishery	Salmon species	Length	Genetic tissue	CWT^1
BS pollock				
	Chinook	2,591	2,513	13
	Chum	6,691	6,105	3
	Coho	26	n/a ²	2
	Pink	40	n/a	0
	Sockeye	25	n/a	0
subtotal		9,373	8,618	18
BSAI non-pollock				
	Chinook	3	n/a	0
	Chum	2	n/a	0
	Coho	0	n/a	0
	Pink	0	n/a	0
	Sockeye	0	n/a	0
subtotal		5	n/a	0
Total		9,378	8,618	18

Table 1. Number of length, genetic, and CWT samples collected from incidentally caught salmon in the 2011 Bering Sea/Aleutian Islands pollock and non-pollock fisheries.

¹ Salmon head collected from fish missing adipose fin.

 2 n/a = not part of sampling protocol

GOA Pollock Fishery Sampling and Data Collection

The GOA groundfish fleet requires 100% coverage for catcher vessels greater than 125 ft. length overall (LOA), while catcher vessels between 60 ft. and 125 ft. LOA require 30% coverage. In 2011, the Observer Program's biological salmon sampling protocols for the GOA pollock fishery were revised to be as consistent as possible with the changes implemented in the Bering Sea pollock fishery. Additionally, full discard of all salmon species was required in the GOA groundfish fisheries; therefore, vessel observers in the GOA could only collect data from salmon as they were encountered. This included salmon discarded at sea, salmon found within the randomly collected at-sea species composition samples, and salmon encountered while monitoring the vessel offload. Each Chinook or chum salmon encountered under each of these three situations was sampled for genetics, checked for a missing adipose fin, and a scale sample was collected to verify species identification.

Data collected from the observed vessels provide an indication of the relative numbers and species of salmon incidentally taken in the Alaska groundfish fisheries. The total number of

incidentally caught salmon was obtained using at-sea composition samples extrapolated to the vessel's total catch. The number of the salmon reported in observed pollock catcher vessel offloads was then extrapolated to all unobserved pollock catcher vessel offloads for an overall estimate of salmon incidental catch. In rare circumstances where the offload sample is not completed, NMFS Alaska Region used number of salmon in the at-sea samples to extrapolate to the entire vessel offload.

Total numbers of all other salmon species were collected following the Chinook and chum sampling protocols described above. Length measurements and biological data were only collected from salmon encountered within the at-sea composition sample or during the vessel offload.

In the 2011 GOA pollock fishery, 235 Chinook and 6 chum salmon were measured for length. Of these fish, 221 Chinook and 3 chum were sampled for genetic tissue (Table 2). In addition, 12 Chinook were missing their adipose fin, and their heads were shipped to the Auke Bay lab to be scanned for CWT presence and analysis. It is important to note that every biological specimen such as genetic tissue samples or scale samples is associated with a length. For this reason the total number of lengths is expected to exceed the total number of any biological specimen.

GOA Non-pollock Fishery Sampling and Data Collection

The non-pollock fisheries in the GOA, such as flatfish and Pacific cod trawl, contribute a smaller number of incidentally caught salmon in comparison to the pollock fishery. Observer coverage for groundfish vessels is the same for both pollock and non-pollock vessels with the exception of the rockfish fishery that requires 100% observer coverage.

In these non-pollock fisheries, the total number of incidentally caught salmon is obtained using the same methods as those used in the GOA pollock fishery, although there is no monitoring of the vessel's offload. All salmon numbers are obtained using at-sea species composition samples collected by vessel observers and extrapolated to the vessel's total catch. Observers' at-sea samples in these non-pollock fisheries are collected using the same methods as Bering Sea non-pollock fishery sampling protocols described above.

In the 2011 GOA non-pollock fisheries, observers measured a total of 62 Chinook and 25 chum salmon. Of these fish, 7 Chinook were missing an adipose fin (Table 2). Salmon heads were collected and shipped to the Auke Bay Lab to be scanned for CWT presence and analysis.

	_	Sample				
Area/fishery	Salmon species	Length	Length Genetic tissue			
GOA pollock						
	Chinook	235	221	12		
	Chum	6	3	0		
	Coho	13	0	0		
	Pink	1	0	0		
	Sockeye	0	0	0		
subtotal		255	224	12		
GOA non-pollock						
	Chinook	62	n/a	7		
	Chum	25	n/a	0		
	Coho	6	n/a	0		
	Pink	1	n/a	0		
	Sockeye	0	n/a	0		
subtotal		94	n/a	7		
Total		349	224	19		

Table 2. Number of samples collected from incidentally caught salmon in the2011 Gulf of Alaska pollock and non-pollock fisheries.

¹ Salmon head collected from fish missing adipose fin.

 2 n/a = not part of sampling protocol

Salmon Research in the Alaska Groundfish Fisheries

CWT Expansions

CWTs are an important source of information for the stock-specific ocean distribution of those Chinook salmon stocks that are tagged with CWTs and caught as bycatch in the BSAI and GOA groundfish fisheries. In 2010, the North Pacific Fishery Management Council (Council) contracted with Cramer Fish Sciences to compile a database of CWT release groups of ESAlisted west coast salmonids based on Mark Center information. In 2011, a new contract was implemented, and the database includes all production (counted and estimated, tagged and untagged) of both wild and hatchery components of each ESU on an annual basis, dating back to when each ESU was first defined by NMFS. Future CWT analyses in the BSAI and GOA will include a new summary table in the database on the annual production of stream type (spring run) Chinook salmon ESA-listed ESUs originating from Washington, Oregon, and Idaho.

Ideally, it would be preferable to calculate a total estimated contribution of Chinook salmon from ESA-listed ESUs harvested in the BSAI and GOA in order to determine the impact of groundfish fisheries on these stocks. Total estimated contributions for CWT recoveries can be calculated in

a two-step process involving a sampling expansion factor and a marking expansion factor (see Attachment 4 on Recovery Estimation Technique for a more detailed explanation).

Unfortunately, sampling expansion factors cannot be calculated for the CWT recoveries of ESAlisted ESUs in the BSAI and GOA because of data limitations. For most of the recoveries of CWTs in the Alaska groundfish trawl fisheries, it is unknown whether the CWTs were collected from inside or outside the sample. A sampling expansion factor can only be calculated from CWTs recovered from inside a sample where the total number of sampled fish is known. CWT recoveries from outside the sample ("select" recoveries where the total number of fish examined is unknown) cannot be used to calculate a sampling expansion factor.

However, marking expansions can still be calculated for each CWT recovery from the mark expansion factors for each tag code. Because not all fish in a tag release group are actually tagged with CWTs, marking expansion factors account for the fraction of each release group that is tagged (see Recovery Estimation Technique). Without being able to calculate total estimated contributions because of unknown sampling expansion factors, mark expansions offer the closest approximation to the contribution of Chinook salmon from ESA-listed ESUs for the CWTs recovered from the BSAI and GOA groundfish fisheries. Mark expansions should be considered a minimal estimate for the actual total contribution of Chinook salmon from ESA-listed ESUs in the BSAI and GOA groundfish fisheries.

Occurrence of ESA-listed Chinook salmon ESUs in the BSAI and GOA

Recoveries of CWTs from outside the sample (or from unknown sample origin) are still important for documenting occurrence of Chinook salmon from ESA-listed ESUs in the BSAI and GOA trawl fisheries. Chinook salmon from the Lower Columbia River (LCR), Upper Willamette River (UWR), and Upper Columbia River (UCR) Spring ESUs have been recovered in the Alaska groundfish fisheries. Since 1984, CWTs have been recovered from 23 LCR, 97 UWR, and 1 UCR Chinook salmon in the GOA trawl fishery, and from 9 LCR and 12 UWR Chinook salmon in the BSAI trawl fishery, both pre- and post-listing (Attachment 5, Tables 1 and 2). By applying mark expansion factors, the estimated numbers increase to 112 LCR, 275 UWR, and 1 UCR Chinook salmon in the GOA and 9 LCR and 62 UWR Chinook salmon in the BSAI (Attachment 5, Tables 1 and 2).

These numbers should be considered as minimum estimates of the number of ESA-listed ESUs in the GOA and BSAI groundfish fisheries. Until adequate numbers of CWTs are recovered from inside the observers' samples, where the total number of fish sampled is known, and expansions made to account for unmarked wild fish, an estimate of total contribution of ESA-listed ESUs in the Alaska groundfish fisheries cannot be calculated accurately.

Research surveys have documented the occurrence of other ESUs of ESA-listed Chinook salmon in the GOA besides the LCR, UWR, and UCR. Small numbers of the Puget Sound (PS) Chinook ESU, the Snake River Spring/Summer (SRS/S) Chinook ESU, and the Snake River Basin (SRB) steelhead ESUs have also been recovered in the GOA. Since 1991, CWTs have been recovered from 3 LCR, 1 PS, 5 SRS/S, 4 UCR, 11 UWR Chinook salmon, and 1 SRB steelhead in domestic and foreign research surveys in the GOA (Attachment 5, Tables 3 and 4). By applying mark expansion factors, the estimated numbers increase to 6 LCR, 1 PS, 9 SRS/S, 4 UCR, 72 UWR Chinook salmon, and 1 SRB steelhead. The purpose of providing these research CWT recoveries is to determine potential occurrence of these ESA-listed ESUs in Alaskan waters where groundfish fisheries occur. The bycatch of ESA-listed ESUs in the groundfish fisheries is not represented accurately by these CWT recoveries from research surveys because the research surveys target salmon with a different gear type at and fish at shallower depths than the groundfish fisheries.

Salmon Research in the BSAI

Coded-Wire Tag Results in the BSAI

Recoveries of CWT Chinook salmon in the bycatch of the BSAI groundfish fisheries are summarized by state or province of origin (Attachment 6, Table 1). Expanded CWT proportions should not be taken as true proportions in the fishery because the rate of tagging from different regions is not proportional and there are relatively few wild fish actually tagged. Since 1995, most of the observed CWTs of Chinook salmon recovered from the BSAI fisheries have originated from British Columbia (36%) and Alaska (35%), followed by Oregon (16%), Washington (4%), Yukon Territory (3%), and California (<1%). When accounting for mark expansions for each tag code, British Columbia provided 61% of Chinook bycatch, followed by Alaska (23%), Oregon (10%), Washington (10%), Yukon Territory (1%), and California (1%).

Most of the Chinook salmon represented by CWTs and harvested in the BSAI originated from hatchery production (Attachment 6, Table 2). Overall since 1995, 97% of the Chinook salmon bycatch marked with CWTs was of hatchery origin, 2% from wild stocks, and less than 1% of mixed hatchery-wild stocks. For Alaska-origin CWT Chinook salmon however, wild stocks comprised 6% of the bycatch of Alaskan stocks in the BSAI since 1995, with hatcheries comprising the other 94%. For all the CWT Chinook salmon that have been released in Alaska from the 1992 brood onward, 87% were of hatchery origin and 13% were from wild stocks. For all the CWT Chinook salmon that have been released in Alaska from the 1992 brood onward, 87% were of hatchery origin, 3% were from wild stocks, and 3% were from the 1992 brood onward, 94% were of hatchery origin, 3% were from wild stocks, and 3% were from mixed stocks. Besides Alaska, Washington was the only other state of origin with a recovery of a wild stock in the BSAI.

The CWT Chinook salmon recovered in the BSAI were composed of a variety of run-types, and the percentage of each run-type varied by state or province of origin (Attachment 6, Table 3). The different designated run-types are determined by the tagging agency. Overall, the most prevalent run-type of CWT Chinook salmon in the BSAI was Fall (41%), followed by Spring (40%), Summer (18%), and small numbers of other run-types. Percent composition of different run-types varied by state or province of origin. For Alaska stocks, 99% of CWT recoveries were Spring run-type, followed by Summer (1%). For British Columbia, the most prevalent run-type was Fall (43%), followed by Summer (37%) and Spring (20%). Washington Chinook were predominantly Fall run-type (77%), followed by Spring (17%), Summer (4%), and Late Fall Upriver Brights (2%). Oregon Chinook were predominantly Fall (69%), followed by Spring (27%), Winter (3%), and Late Fall Upriver Brights (2%). For Yukon Territory, Spring was the most prevalent run-type (50%), followed by Summer (29%), Fall (14%), and Late Fall (7%).

The CWT Chinook salmon recovered in the BSAI from 1995 to 2010 (excluding Alaska stocks of origin) were composed of a number of age classes from age-2 to age-6. Almost half of the CWT recoveries were from age-3 fish (49%), followed by age-4 (34%), age-2 (10%), age-5 (7%), and age-6 (1%) (Attachment 7, Table 1). Ages of CWT recoveries were calculated by subtracting the brood-year of each CWT recovery from the recovery-year to come up with a total-age for each fish.

Genetic Analysis of Salmon Bycatch in the BSAI

In 2012, the NMFS Alaska Fisheries Science Center Auke Bay Lab reported genetic stock identification results for a subset of Chinook salmon bycatch samples collected in the Bering Sea from the bycatch of the 2010 groundfish trawl fisheries (Guthrie et al. 2012). Samples were genotyped for the 43 unlinked single-nucleotide polymorphism (SNP) markers represented in the Alaska Department of Fish and Game (ADF&G) genetic baseline. In 2010, the genetic samples were collected as part of the vessel observer's species-composition analysis; therefore, stock composition estimates apply to the sample set and may not represent the entire Chinook salmon bycatch. The majority of the 826 Chinook salmon bycatch samples taken in 2010 originated from Coastal Western Alaska (42%), with smaller contributions from Upper Yukon River (20%), North Alaska Peninsula (14%), and Middle Yukon River (11%) stocks. The remaining 14% comprised Washington, Oregon and British Columbia stocks. These estimates are similar to the 2005 to 2009 Chinook salmon bycatch estimates; however, there were higher proportions of Yukon River stocks and lower proportions of Coastal Western Alaska stocks in 2010 compared to the other years (Attachment 8). Temporal analysis of the samples revealed changes in Chinook salmon stock composition during 2010, with lower contribution of North Alaska Peninsula and Yukon River stocks and higher concentrations of U.S. Pacific Northwest and British Columbia Chinook salmon stocks during the B season of the groundfish fishery.

Caution must be used in comparisons across years and between seasons as there are differences in both the sampling rate and where/when genetic samples were collected from year to year. In addition, the extent to which any salmon stock is impacted by the bycatch of the Bering Sea trawl fishery is dependent on many factors including (1) the overall size of the bycatch, (2) the age of the salmon caught in the bycatch, (3) the age of the returning salmon, and (4) the total escapement of the affected stocks taking into account lag time for maturity and returning to the river. As such, a higher stock composition estimate one year does not necessarily infer greater impact than a smaller estimate in another year.

Amendment 91 requires that all salmon taken as bycatch in the Bering Sea pollock fishery be sorted by species and counted to ensure compliance with the salmon bycatch caps for the pollock fishery. This has provided additional opportunities for observers to provide representative samples from the salmon bycatch for genetic analysis, and improve the capability to characterize the origin of salmon taken as bycatch in the Bering Sea pollock fishery. In 2011, systematic random sampling was employed to take genetic samples from every tenth incidental caught Chinook salmon from the pollock trawl fishery.

Salmon Research in the GOA

Coded-Wire Tag Recoveries in the GOA

Recoveries of CWT Chinook salmon in the bycatch of the GOA groundfish fisheries are summarized by state or province of origin (Attachment 9, Table 1). Expanded CWT proportions should not be taken as true proportions in the fishery because the rate of tagging from different regions is not proportional and there are relatively few wild fish actually tagged. Since 1995, a total of 609 CWT recoveries from the GOA Chinook salmon bycatch have been analyzed and most of the observed CWTs of Chinook salmon in the GOA fisheries have originated from British Columbia (32%) and Alaska (32%), followed by Oregon (21%), Washington (15%), and Idaho (<1%). When accounting for mark expansions for each tag code, British Columbia provided 50% of Chinook bycatch, followed by Alaska (35%), Oregon (8%), Washington (7%), and Idaho (<1%). In 7 out of those 16 years, however, Alaska was the major provider of the year's CWT Chinook salmon bycatch in the GOA after accounting for mark expansions.

Most of the Chinook salmon represented by CWTs and recovered in the GOA groundfish fisheries originated from hatchery production (Attachment 9, Table 2). Overall since 1995, 95% of the CWT Chinook salmon bycatch was of hatchery origin, 3% from wild stocks, and 2% of mixed hatchery-wild stocks. For Alaska-origin CWT Chinook salmon however, wild stocks comprised 9% of the bycatch of Alaskan stocks in the GOA since 1995, with hatcheries comprising the other 91%. For all the CWT Chinook salmon that have been released in Alaska from the 1992 brood onward, 87% were of hatchery origin and 13% were of wild origin. For all the CWT Chinook salmon that have been released in Alaska from the 1992 brood onward, 87% were of hatchery origin, 3% were from wild stocks, and 3% were from mixed stocks. In the last 2 years, 2009 and 2010, wild stocks have provided 25% of the Alaska-origin CWT Chinook salmon harvested in the GOA, with hatchery stocks providing the other 75%. Washington was the only other state of origin with recoveries of wild stocks in the GOA.

Chinook salmon represented by CWTs and recovered in the GOA groundfish fisheries were composed of a variety of run-types, and the percentage of each run-type varied by state or province of origin (Attachment 9, Table 3). The different designated run-types are determined by the tagging agency. Overall, the most prevalent run-type of CWT Chinook salmon in the GOA was Spring, followed by Fall, Summer, and small numbers of other run-types. Percent composition of different run-types varied by state or province of origin. For Alaska stocks, 100% of CWT recoveries were Spring run-type. For British Columbia, the most prevalent run-type was Summer (41%), followed by Fall (33%) and Spring (26%). Washington Chinook salmon were predominantly Fall run-type (57%), followed by Summer (26%), Spring (9%), Late Fall (5%), and Late Fall Upriver Bright (3%). Oregon Chinook salmon were predominantly Spring (55%), followed by Fall (43%) and Winter (2%).

The CWT Chinook salmon recovered in the GOA groundfish fisheries from 1995 to 2010 (excluding Alaska stocks of origin) were composed of a number of age classes from age-2 to age-5. Over half of the CWT recoveries were from age-3 fish (57%), followed by age-4 (30%), age-2 (8%), and age-5 (5%) (Attachment 7, Table 1). Ages of CWT recoveries were calculated

by subtracting the brood-year of each CWT recovery from the recovery-year to come up with a total-age for each fish.

Genetic Analysis of Salmon Bycatch in the GOA

While genetic and scale pattern derived stock composition analyses have been completed for available sample sets from the Chinook salmon Prohibited Species Catch (PSC) of the BSAI groundfish trawl fisheries (Myers and Rogers 1988; Myers et al. 2004; NMFS 2009a; Guyon et al. 2010a; Guyon et al. 2010b), limited sampling has precluded stock composition of the salmon PSC in the GOA pollock trawl fishery.

For the 2010 genetic analyses, approximately 116 Chinook salmon axillary process samples from the Western GOA, and 45 samples from statistical area 620 in the Central GOA were received by the NMFS Auke Bay Lab from the Alaska groundfish fisheries PSC. The overall fraction sampled was 0.4% and did not exceed 0.8% for any area. The lack of representative samples and small sample sizes preclude calculating statistically reliable stock composition estimates of the 2010 GOA Chinook salmon bycatch as a whole. The statistical area 610 sample set of 116 samples originated from 5 cruises from 34 offloads/hauls. The statistical area 620 sample set of 45 samples originated from 5 cruises (36 were from 1 cruise) from 9 hauls/offloads (Guyon et al. 2011). Samples were genotyped for 43 SNP markers represented in the ADF&G coastwide Chinook salmon baseline. The 2010 GOA samples were predominantly from Chinook salmon stocks from the U.S. Pacific Northwest, British Columbia, and coastal southeastern Alaska. For reasons discussed above, these results provide "presence" indicators of Chinook salmon stocks rather than relative abundance (Guyon et al. 2011).

Size and Weight of Chinook Salmon PSC in the GOA

Chinook salmon PSC in the GOA groundfish fisheries in the Central and Western GOA tend to be smaller fish, averaging just over 7.5 pounds based on observer samples taken during 2001 through 2010. Attachment 10, Figure 1 differentiates the average weight of GOA Chinook salmon PSC during the time periods of the GOA pollock seasons, in the Central and Western GOA. Because there is more observer coverage in the Central GOA groundfish fisheries, the number of samples for the Central GOA (2,299) is considerably higher than is available for the Western GOA (312). In the Central GOA, the average weight of Chinook salmon PSC varied from 6 to 9 pounds, depending on the time of year. The data indicate that Chinook salmon taken in the first half of the year are, on average, smaller than fish that are taken in the second half of the year. Attachment 10, Figure 2 shows the length frequency of Chinook salmon in GOA groundfish fisheries, for a longer time series (1987 through 2010), and compares the length frequency by quarter year. As above, the data indicate that fisheries occurring during the first half of the year may be catching smaller Chinook salmon than the fisheries operating in the second part of the year. An adult equivalency model has not been completed for Chinook salmon bycatch in the GOA.

Chinook Salmon Management Measures

Bering Sea Management Measures - Amendment 91

Amendment 91 is an innovative approach to managing Chinook salmon by catch in the Bering Sea pollock fishery that combines a PSC limit on the amount of Chinook salmon that may be caught incidentally with an incentive plan agreement (IPA) and performance standard designed to minimize by catch to the extent practicable in all years. Amendment 91 applies only to management of the Bering Sea pollock fishery and does not affect the management of pollock fisheries in the Aleutian Islands. Under Amendment 91, the pollock fleet is prevented from exceeding the 60,000 Chinook salmon PSC limit in every year. Each year, NMFS will allocate a portion of the 60,000 Chinook salmon PSC limit to the mothership sector, catcher/processor sector, inshore cooperatives, and Community Development Ouota Program groups if an IPA is formed and approved by NMFS. The sector-level performance standard of 47,591 Chinook salmon is a tool to ensure that each sector does not fully harvest its Chinook salmon PSC allocation in most years. For a sector to continue to receive Chinook salmon PSC allocations under the 60,000 Chinook salmon PSC limit, that sector may not exceed its portion of 47,591 in any three years within seven consecutive years. If a sector fails this performance standard, it will permanently be allocated an annual fixed portion of the 47,591 Chinook salmon PSC limit. All vessels choosing to not participate in an IPA would fish under a portion of the -opbut" cap of 28,496 Chinook salmon PSC limit and would be ineligible to participate in management measures intended to offer flexibility to vessels harvesting pollock. For more information see http://www.fakr.noaa.gov/sustainablefisheries/bycatch/salmon/chinook/feis/eis 1209.pdf

With the IPA component and the performance standard, Amendment 91, as implemented by the final rule, will result in a greater reduction of Chinook salmon bycatch over time than the PSC limits. NMFS monitors all salmon bycatch by each vessel in the pollock fishery through a census, 100% observer coverage, and an expanded biological sampling program. Annual reports and the economic data collection program are designed to evaluate whether and how incentive plans influence a vessel's operational decisions to avoid Chinook salmon bycatch. If information becomes available to indicate that Amendment 91 is not providing the expected Chinook salmon savings, NMFS will work with the Council to take additional actions to minimize Chinook salmon bycatch to the extent practicable. Amendment 91 applies only to management of the Bering Sea pollock fishery and does not affect the management of pollock fisheries in the Aleutian Islands.

Amendment 91 also removed from regulations the 29,000 Chinook salmon PSC limit in the Bering Sea, the Chinook Salmon Savings Areas in the Bering Sea, exemption from Chinook Salmon Savings Area closures for participants in the Voluntary Rolling Hotspot System Intercooperative Agreement (VHRS ICA), and Chinook salmon as a component of the VRHS ICA. The final rule did not change any regulations affecting the management of Chinook salmon in the Aleutian Islands or non-Chinook salmon in the BSAI. The Council is currently considering a separate action to modify the non-Chinook salmon management measures to minimize non-Chinook salmon bycatch in the Bering Sea. For more information see http://www.alaskafisheries.noaa.gov/npfmc/bycatch-controls/BSChumBycatch.html

Amendment 93 to the GOA FMP

In June 2011, the Council developed its preferred alternative for Amendment 93. If approved, Amendment 93 would establish Chinook salmon PSC limits in the Central and Western GOA reporting areas, which would close the directed pollock fishery in those areas, if reached. This action also would require retention of salmon in the Central and Western GOA pollock fisheries. Amendment 93 would increase observer coverage on vessels under 60 feet (18.3 m) length overall by January 2013, unless the restructured North Pacific Groundfish Observer Program is in place by this time. Observer restructuring is a randomized deployment of observers to yield unbiased estimates of total catch and catch composition. Under the restructuring program, the sampling percentage/coverage rates won't be in regulations but initially will be about 30% coverage, which will be subject to change year to year based on data needs. All vessels will have some level of observer coverage. An EA for this action is available at

http://www.fakr.noaa.gov/analyses/observer/amd86_amd76_earirirfa0312.pdf.

Additional details on Chinook salmon PSC for the GOA groundfish fisheries are available in the EA/RIR/IRFA prepared for this action at

http://alaskafisheries.noaa.gov/sustainablefisheries/amds/93/amd93earirirfa0212.pdf.

A notice of availability for the proposed amendment was published in the Federal Register on November 23, 2011 (76 FR 72384). The proposed rule was published on December 23, 2011, with the comment period ending on January 30, 2012. The Secretary of Commerce approved the FMP amendment on February 17, 2012. The proposed regulations specify the PSC limits and retention requirements will be effective in mid-2012.

This action applies only to the management of the pollock trawl directed fisheries in the Central and Western Reporting Areas of the GOA (Central GOA and Western GOA), which includes the federal fisheries in the waters of the EEZ (3 nm to 200 nm), and the waters of the State of Alaska (State) (0 to 3 nm) that are managed under a parallel fishery. Parallel fisheries in State waters are opened and closed by the State and are prosecuted under rules similar to those applying in the federal fisheries, with catch accrued against the federal catch limit (total allowable catch or TAC). The Council noted that the pollock fishery accounts for approximately 75% of Chinook salmon PSC in the GOA groundfish fisheries, based on the average Chinook salmon PSC levels from 2001 to 2010.

Under Amendment 93, the Chinook salmon PSC limits are based on the Council's recommended goal of limiting Chinook salmon bycatch in the Central and Western GOA pollock fisheries to no more than 25,000 salmon. This amount is below the 2007 Incidental Take Statement of 40,000 fish for Chinook salmon in the GOA groundfish fisheries. A component of Amendment 93 would require full retention of salmon species incidentally caught in the Central or Western GOA pollock fisheries, which is a necessary step to facilitate future stock of origin analyses. The Council also noted that further action will be taken to address Chinook salmon bycatch in the other fisheries of the GOA.

Reducing salmon incidental catch continues to be an important issue for the Council, Alaska Region, western Alaska communities, and the fishing industry. If you have any questions, please contact Mary Grady at mary.grady@noaa.gov or 907-586-7172.

- 1. BSAI and GOA groundfish fisheries total Chinook salmon catch 2004-2011
- 2. Chinook salmon mortality in BSAI groundfish fisheries
- 3. Chinook salmon mortality in GOA groundfish fisheries
- 4. Recovery Estimation Technique
- 5. Observed Number and Mark Expansion of ESA-listed CWT Chinook salmon by ESU in BSAI trawl fisheries
- 6. Observed Number and Mark Expansion of CWT Chinook salmon recovered in the bycatch of the BSAI groundfish fishery by run year and state or province of origin, 1995–2010
- 7. Age structure of CWT Chinook salmon recovered in the bycatch of the BSAI and GOA groundfish fisheries, 1995–2010, excluding all stocks of Alaska origin
- 8. Comparison of yearly stock composition estimates (2008-2010) based on available genetic samples from the Bering Sea Chinook salmon bycatch
- 9. Observed Number and Mark Expansion of CWT Chinook salmon recovered in the bycatch of the GOA groundfish fisheries by run year and state or province of origin, 1995 through 2010
- 10. Average weight and length frequency of Chinook salmon prohibited species catch in the groundfish fisheries in the Western and Central GOA

Cc:

Peter Dygert, NMFS NW Region, SF Division Susan Bishop, NMFS NW Region, SF Division Chris Oliver, NPFMC Doug DeMaster, NMFS AFSC Phil Mundy, NMFS AFSC Bill Heard, NMFS AFSC Adrian Celewycz, NMFS AFSC Jeff Guyon, NMFS AFSC Martin Loefflad, NMFS AFSC Patti Nelson, NMFS AFSC Lew Queirolo, NMFS AK Region

Literature Cited

- Guyon, J.R., Guthrie, C.M., and Nguyen, H. 2011. Genetic Stock Composition Analysis of Chinook Salmon Samples Collected from the Bycatch of the 2010 Gulf of Alaska Trawl Fishery. Report to the North Pacific Fisheries Management Council. (Juneau, AK, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories), pp. 3.
- Guyon, J.R., Guthrie, C.M., and Nguyen, H. 2010a. Genetic Stock Composition Analysis of Chinook Salmon Bycatch Samples from the 2008 Bering Sea Pollock Fishery, Report to the North Pacific Fisheries Management Council. (Juneau, AK, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories), pp. 32.
- Guyon, J.R., Guthrie, C.M., and Nguyen, H. 2010b. Genetic Stock Composition Analysis of Chinook Salmon Bycatch Samples from the 2007 "B" Season and 2009 Bering Sea Trawl Fisheries, Report to the North Pacific Fisheries Management Council. (Juneau, AK, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories), pp. 10.
- Guthrie, C. M. III, H. T. Nguyen, and J. R. Guyon. 2012. Genetic stock composition analysis of chinook salmon bycatch samples from the 2010 Bering Sea trawl fisheries. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-232, 22 p.
- Johnson, K.J. 2004. Regional overview of coded wire tagging of anadromous salmon and steelhead in Northwest America: Regional Mark Processing Center, Pacific States Marine Fisheries Commission, Portland, Oregon.
- Myers, K.W., Walker, R.V., Armstrong, J.L., Davis, N.D., and Patton, W.S. 2004. Stock Origins of Chinook Salmon in Incidental Catches by Groundfish Fisheries in the Eastern Bering Sea, 1997–1999. North Pacific Anadromous Fish Commission Technical Report No 5, 74-75.
- Myers, K.W., and D.E. Rogers. 1988. Stock origins of chinook salmon in incidental catches by groundfish fisheries in the eastern Bering Sea. N. Am. J. Fish. Manage. 8: 161–171.
- Nandor, G.F., Longwill, J.R., Webb, D.L. 2010. Overview of the coded wire tag program in the Greater Pacific Region of North America, in Wolf, K.S. and O'Neal, J.S., eds., PNAMP Special Publication: Tagging, Telemetry and Marking Measures for Monitoring Fish Populations—A compendium of new and recent science for use in informing technique and decision modalities: Pacific Northwest Aquatic Monitoring Partnership Special Publication 2010-002, chap. 2, p. 5–46.

- NMFS (National Marine Fisheries Service). 2012. Supplemental Biological Opinion on the Re-initiation of Endangered Species Act Section 7 Consultation on Incidental Catches of Chinook Salmon in the Gulf of Alaska Groundfish Fisheries. January 9, 2012. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA.
- NMFS. 2011. Secretarial Review Draft Environmental Assessment/Regulatory Impact Review/Initial Regulatory Flexibility Analysis for Chinook Salmon Prohibited Species Catch in the Gulf of Alaska Pollock Fishery. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Regional Office, Juneau, AK.
- NMFS. 2009a. Supplemental Biological Opinion Reinitiating Consultation on the January 11, 2007 Biological Opinion regarding Authorization of Bering Sea/Aleutian Islands (BSAI) Groundfish Fisheries. December 2, 2009. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA.
- NMFS. 2009b. Bering Sea Chinook salmon bycatch management–Volume 1, Final Environmental Impact Statement, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Alaska Regional Office, Juneau, AK.
- NMFS. 2007. Supplemental Biological Opinion Reinitiating Consultation on the November 30, 2000 Biological Opinion regarding Authorization of Bering Sea/Aleutian Islands Groundfish Fisheries. January 11, 2007. U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Seattle, WA.
- Pella, J.J., and H.J. Geiger. 2009 Sampling considerations for estimating geographic origins of Chinook salmon bycatch in the Bering Sea pollock fishery. Alaska Department of Fish and Game, Special Publication No. 09-08, Anchorage.

	ninook Count		2004	2005	2006	2007	2008	2009	2010	2011
ar	Pelagic	Pollock Target	48,733	67,362	82,695	121,770	21,481	12,406	9,693	25,499
Trawl Gear		Pacific Cod Target	5,599	3,764	3,620	6,287	2,063	1,054	1,256	446
awl	Non-Pelagic	Flatfish	2,166	2,950	725	1,169	246	166	636	19
Tra		Other Targets	404	135	13	279	308	354	883	644
Non	-Trawl Gear	All Targets	57	56	31	74	10	11	12	62
	то	TAL	56,960	74,266	87,084	129,579	24,107	13,990	12,479	26,670
BSAI Groundfish		2004	2005	2006	2007	2008	2009	2010	2011	
ar	Pelagic	Pollock Target	1,452,486	1,461,803	1,474,864	1,341,395	980,866	810,475	803,513	1,199,034
Gear		Pacific Cod Target	109,816	81,230	85,564	93,077	43,859	38,238	36,938	44,549
Trawl	Non-Pelagic	Flatfish	180,893	192,555	194,683	217,734	293,334	245,561	277,416	310,371
Л		Other Targets	75,530	78,422	80,320	85,251	83,688	99,496	100,458	86,259
Non	-Trawl Gear	All Targets	160,425	167,103	146,677	122,831	144,323	143,798	136,863	178,038
	то	TAL	1,979,151	1,981,113	1,982,108	1,860,289	1,546,070	1,337,568	1,355,187	1,818,251
BSAI Ch	ninook Rate		2004	2005	2006	2007	2008	2009	2010	2011
ar	Pelagic	Pollock Target	0.034	0.046	0.056	0.091	0.022	0.015	0.012	0.021
Gear		Pacific Cod Target	0.051	0.046	0.042	0.068	0.047	0.028	0.034	0.010
Trawl	Non-Pelagic	Flatfish	0.012	0.015	0.004	0.005	0.001	0.001	0.002	0.000
Tr		Other Targets	0.005	0.002	0.000	0.003	0.004	0.004	0.009	0.007
Non	-Trawl Gear	All Targets	0.000	0.000	0.000	0.001	0.000	0.000	0.000	0.000
	то	TAL	0.029	0.037	0.044	0.070	0.016	0.010	0.009	0.015

*2011 data are preliminary Source: NMFS Alaska Region Catch Accounting System: 2/29/2012

	. OOA groundin	sh lishenes total Chinod	a saimon catci	r compared a	ganisi iolai yi	oununsii catei	1. 2004 2011			
Gulf of	Alaska Chinool	Count	2004	2005	2006	2007	2008	2009	2010	2011
	Pelagic	Pollock Target	12,506	26,631	15,564	35,127	10,667	2,916	42,885	12,485
ar	Pelagic	Other Targets	-	63	6	304	726	126	148	59
Trawl Gear		Pollock Target	908	41	882	624	436	111	435	1,351
awl	Non-Pelagic	Pacific Cod Target	2,800	2,853	1,909	2,654	2,804	3,784	7,750	4,485
Tra	NOII-Pelagic	Flatfish	885	387	263	1,732	1,514	1,181	1,448	1,042
		Other Targets	646	1,296	380	50	30	278	1,893	1,347
Nor	n-Trawl Gear	All Targets	32	-	-	47	-	-	-	-
TOTAL			17,777	31,270	19,004	40,539	16,176	8,397	54,559	20,769
Gulf of	Alaska Ground	fish	2004	2005	2006	2007	2008	2009	2010	2011
	Pelagic	Pollock Target	57,984	83,218	73,225	52,843	47,144	39,558	74,743	72,842
ar	Pelagic	Other Targets	977	1,433	3,497	4,647	4,522	3,381	4,743	4,123
Trawl Gear	Non-Pelagic	Pollock Target	16,785	12,443	11,403	13,606	22,857	8,736	17,230	13,941
av		Pacific Cod Target	20,449	29,622	41,313	42,573	47,036	52,052	42,619	44,809
i F		Flatfish	26,094	21,884	22,148	20,337	20,467	22,579	24,203	20,463
		Other Targets	7,195	897	3,259	1,351	3,556	1,921	2,994	9,246
Nor	n-Trawl Gear	All Targets	59,180	50,758	53,912	54,101	56,181	55,019	71,117	84,022
TOTAL			188,664	200,254	208,758	189,458	201,763	183,246	237,648	249,445
Gulf of	Alaska Chinool	Rate	2004	2005	2006	2007	2008	2009	2010	2011
		Pollock Target	-	0.001	0.000	0.006	0.015	0.003	0.002	0.001
ъ.	Pelagic	Other Targets	12.796	18.589	4.450	7.560	2.359	0.863	9.042	3.029
Trawl Gear		Pollock Target	0.054	0.003	0.077	0.046	0.019	0.013	0.025	0.097
avl	Non Delegie	Pacific Cod Target	0.137	0.096	0.046	0.062	0.060	0.073	0.182	0.100
L L	Non-Pelagic	Flatfish	0.034	0.018	0.012	0.085	0.074	0.052	0.060	0.051
		Other Targets	0.090	1.445	0.117	0.037	0.008	0.145	0.632	0.146
Nor	n-Trawl Gear	All Targets	0.001	-	-	0.001	-	-	-	-
TOTAL			0.094	0.156	0.091	0.214	0.080	0.046	0.230	0.083

Table 2. GOA groundfish fisheries total Chinook salmon catch compared against total groundfish catch: 2004–2011

*2011 data are preliminary Source: NMFS Alaska Region Catch Accounting System: 2/29/2012

rable	1. Chinook	saimon morta	ality in BSA	i grounans	in fisheries.				
	Annual	Annual	Annual		B season	A season	B season	A season	B season
Year	with CDQ	without CDQ	CDQ only	With	CDQ	Withou	t CDQ	CDQ	only
1991	na	48,880	na	na	na	46,392	2,488	na	na
1992	41,955	na	na	31,419	10,536	na	na	na	na
1993		na	na	24,688	21,326	na	na	na	na
1994	43,821	40,635	3,186	38,921	4,900	36,699	3,936	2,223	963
1995	23,436	21,430	2,006	18,939	4,497	18,284	3,146	655	1,351
1996		60,802	2,402	43,316	19,888	42,028	18,774	1,289	1,114
1997	50,530	48,050	2,481	16,401	34,129	14,905	33,144	1,496	985
1998	55,431	50,313	5,118	18,930	36,501	17,991	32,322	939	4,179
1999		12,937	1,662	8,794	5,805	8,205	4,732	589	1,073
2000		7,474	749	6,568	1,655	6,138	1,336	430	319
2001	40,547	37,986	2,561	24,871	15,676	23,093	14,893	1,778	783
2002		37,581	2,103	26,277	13,407	24,859	12,722	1,418	685
2003		50,858	2,713	40,044	13,527	38,249	12,609	1,795	918
2004		56,960	3,007	30,717	29,250	29,588	27,372	1,129	1,878
2005		72,225	2,042	33,636	40,631	32,334	39,891	1,302	740
2006		85,290	1,794	62,582	24,502	60,974	24,316	1,608	186
2007		123,914	5,653	77,108	52,459	74,004	49,910	3,104	2,549
2008		23,390	718	18,999	5,109	18,394	4,996	605	113
2009		13,488	503	11,075	2,916	10,661	2,827	414	89
2010		12,145	335	9,469	3,011	9,134	3,011	335	0
2011		25,908	764	7,651	19,021	7,221	18,687	430	334
2012	5,620	5,340	280	5,620	0	5,340	0	280	0

Table 1. Chinook salmon mortality in BSAI groundfish fisheries.

Table 2. Chinook salmon mortality in BSAI pollock directed fisheries.

	Annual	Annual	Annual	A season	B season	A season	B season	A season	B season
Year	with CDQ	without CDQ	CDQ only	With	CDQ	Withou	t CDQ	CDQ	only
1991	na	40,906	na	na	na	38,791	2,114	na	na
1992	35,950	na	na	25,691	10,259	na	na	na	na
1993	38,516	na	na	17,264	21,252	na	na	na	na
1994	33,136	30,593	2,543	28,451	4,686	26,871	3,722	1,580	963
1995	14,984	12,978	2,006	10,579	4,405	9,924	3,053	655	1,351
1996	55,623	53,220	2,402	36,068	19,554	34,780	18,441	1,289	1,114
1997	44,909	42,437	2,472	10,935	33,973	9,449	32,989	1,487	985
1998	51,322	46,205	5,118	15,193	36,130	14,253	31,951	939	4,179
1999	11,978	10,381	1,597	6,352	5,627	5,768	4,614	584	1,013
2000	4,961	4,242	719	3,422	1,539	2,992	1,250	430	289
2001	33,444	30,937	2,507	18,484	14,961	16,711	14,227	1,773	734
2002	34,495	32,402	2,093	21,794	12,701	20,378	12,024	1,416	677
2003	45,586	43,021	2,565	32,609	12,977	30,916	12,105	1,693	872
2004	51,696	48,733	2,963	23,093	28,603	21,964	26,769	1,129	1,834
2005	67,361	65,445	1,916	27,331	40,030	26,032	39,413	1,299	617
2006	82,695	80,954	1,741	58,391	24,305	56,806	24,149	1,585	156
2007	121,757	116,128	5,629	69,408	52,349	66,307	49,821	3,101	2,528
2008	21,482	20,841	641	16,640	4,842	16,035	4,806	605	36
2009	12,407	11,960	447	9,688	2,719	9,330	2,630	358	89
2010	9,694	9,359	335	7,626	2,068	7,291	2,068	335	0
2011	25,500	24,736	764	7,137	18,363	6,707	18,029	430	334
2012	4,898	4,618	280	4,898	0	4,618	0	280	0

Notes: Updated 3/1/12

Starting in 2011, the sampling method for salmon in BSAI pollock directed fisheries changed to census counts Non-CDQ data for 1991-2002 from bsahalx.dbf

Non-CDQ data for 2003-2011 from akfish_v_gg_pscnq_estimate

CDQ data for 1992-1997 from bsahalx.dbf

CDQ data for 1998 from boatrate.dbf CDQ data for 1998 from boatrate.dbf CDQ data for 1999-2007 from akfish_v_cdq_catch_report_total_catch

CDQ data for 2008-2011 from akfish_v_gg_pscnq_estimate_cdq

A season - January 1 to June 10

B season - June 11 to December 31

Source: NMFS Alaska Region Catch Accounting System: 3/1/2012

Veer	Annual Total		Other Fisheries				
Year	Teal Annual Iotal	First Quarter	Second Quarter	Third Quarter	Fourth Quarter	Annual	Annual
1991	38,894	3,239	538	1,799	2,862	8,439	30,455
1992	16,787	2,289	2,663	1,457	1,801	8,210	8,578
1993	19,260	6,499	157	2,730	4,192	13,578	5,682
1994	13,615	3,685	88	1,973	1,474	7,219	6,396
1995	14,652	1,408	32	2,342	1,136	4,917	9,735
1996	15,761	4,802	57	6,421	100	11,380	4,381
1997	15,230	4,622	48	4,742	30	9,443	5,787
1998	16,984	1,672	1	8,550	4,005	14,228	2,755
1999	30,600	10,408	35	5,981	10,003	26,428	4,173
2000	26,729	4,298	2,313	9,744	2,058	18,413	8,317
2001	15,104	4,204	3,107	754	1,466	9,531	5,573
2002	12,920	1,505	640	553	2,463	5,161	7,758
2003	15,396	765	389	948	2,298	4,400	10,995
2004	17,777	3,632	2,176	2,207	5,137	13,152	4,625
2005	31,270	11,100	5,123	1,076	10,629	27,927	3,343
2006	19,004	2,918	4,292	4,859	3,875	15,944	3,060
2007	40,539	1,487	28,424	1,309	3,958	35,177	5,362
2008	16,176	578	7,682	387	2,048	10,696	5,480
2009	8,397	704	1,423	656	412	3,195	5,202
2010	54,559	4,963	2,045	4,841	32,929	44,779	9,780
2011	20,769	1,716	1,260	1,508	9,348	13,832	6,937
2012	2,972	2,901	-	-	-	2,901	71

Table 1. Chinook Salmon Mortality in Gulf of Alaska Groundfish Fisheries

1991 - 2002: Blend data. Week end date was used to determine quarters. Week end dates do not always match quarter dates.

2003 - Current: Catch Accounting System.

Due to changes in regulatory pollock season dates from 1991 to 2001 and to match current pollock season dates, data were grouped by quarter.

First Quarter	Jan 1 - Feb 28
Second Quarter	Mar 1 - May 31
Third Quarter	Jun 1 - Sep 30
Fourth Quarter	Oct 1 - Dec 31

Source: NMFS Alaska Region Catch Accounting System: 3/1/2012

Recovery Estimation Technique

The total estimated contributions of ESA-listed salmon ESUs caught in the GOA and BSAI fisheries for each year can be estimated in a two-step process (Nandor et al. 2010). This procedure does not account for groups of fish from an ESU, mainly wild fish, that are not adequately represented by CWTs. The first step is to calculate a sampling expansion factor (a) for each fishery in each year (Johnson 2004):

a = (total catch of each species by fishery by year)/(sampled catch of each species by fishery by year).

However, a sampling expansion factor can only be calculated from CWTs recovered from *inside* a sample where the number of sampled fish is known. CWT recoveries from *outside* the sample (-select" recoveries where the total number of fish examined is unknown) cannot be used to calculate a sampling expansion factor.

For the sampled catch, the estimated total recoveries of tags for each release group from each ESU by fishery and year are calculated:

$$R_{Ti} = aR_O,$$

 R_{Ti} = estimated total recoveries of tags for the *i*th release group; R_{Oi} = observed number of tags for the *i*th release group release group; a = sampling expansion factor for each fishery in each year.

The second step is to account for the fraction of each release group of interest that was tagged (Johnson 2004):

$$C_T = \sum_{i=1}^n b_i R_{Ti};$$

 C_T = the total estimated contribution for a given ESU;

 b_i = a marking expansion factor for the i^{th} release group = (total fish released)/ (total fish marked) for the i^{th} release group;

 R_{Ti} = estimated total recoveries of tags for the *i*th release group.

These are the simplest forms of recovery expansion equations (Nandor et al. 2010).

For recoveries in high seas research cruises, because the total catch is usually sampled for tags, the sampling expansion factor (a) typically = 1.

Table 1. Observed Number and Mark Expansion of ESA-listed CWT salmon by ESU ca	ptured in the bycatch of the
GOA and BSAI trawl fisheries, summed over pre-listing and post-listing periods	

		GOA BSAI			AI
Listing Status	ESU Name	Observed Number	Mark Expansion	Observed Number	Mark Expansion
Pre-listing	Lower Columbia River Chinook	12	82.1	0	0.0
	Upper Willamette River Chinook	40	129.7	2	2.0
Post-listing	Lower Columbia River Chinook	11	29.8	9	9.1
	Upper Willamette River Chinook	57	145.4	10	59.9
	Upper Columbia River spring	1	1.0	0	0.0
	Chinook		1.0	0	0.0

Attachment 5 continued

Table 2. Observed Number and Mark Expansion of ESA-listed CWT salmon bycatch of the GOA and BSAI groundfish fisher	ries
by ESU by year.	

A. Lower Columbia River Chinook ESU			GC	A	BSAI		
Listing Status	ESU Name	Run Year	Observed Mark Number Expansion		Observed Number	Mark Expansion	
Pre-listing	Lower Columbia River Chinook	1984	5	14.1	0	0.0	
i i e nemig		1985	1	1.0	0	0.0	
		1986	0	0.0	0	0.0	
		1987	1	1.3	0	0.0	
		1988	0	0.0	0	0.0	
		1989	0	0.0	0	0.0	
		1990	1	1.0	0	0.0	
		1991	0	0.0	0	0.0	
		1992	1	1.6	0	0.0	
		1993	1	60.3	0	0.0	
		1994	2	2.8	0	0.0	
		1995	0	0.0	0	0.0	
		1996	0	0.0	0	0.0	
Post-listing	Lower Columbia River Chinook	1997	0	0.0	0	0.0	
		1998	2	18.8	0	0.0	
		1999	4	5.9	0	0.0	
		2000	2	2.0	0	0.0	
		2001	2	2.0	1	1.0	
		2002	0	0.0	1	1.0	
		2003	0	0.0	0	0.0	
		2004	1	1.1	3	3.0	
		2005	0	0.0	3	3.1	
		2006	0	0.0	1	1.0	
		2007	0	0.0	0	0.0	
		2008	0	0.0	0	0.0	
		2009	0	0.0	0	0.0	
		2010	0	0.0	0	0.0	

Attachment 5, Table 2 continued

B. Uppe	er Willamette River Chinook Es	SU	G	DA	BS	SAI
Listing Status			Observed Number	Mark Expansion		
Pre-listing	Upper Willamette River	1984	11	16.8	1	1.0
	Chinook	1985	0	0.0	0	0.0
		1986	0	0.0	0	0.0
		1987	0	0.0	0	0.0
		1988	0	0.0	0	0.0
		1989	0	0.0	0	0.0
		1990	4	4.0	0	0.0
		1991	1	13.3	0	0.0
		1992	4	28.5	0	0.0
		1993	14	52.1	0	0.0
		1994	3	8.8	0	0.0
		1995	2	4.9	0	0.0
		1996	1	1.3	1	1.0
Post-listing	Upper Willamette River	1997	1	7.5	0	0.0
	Chinook	1998	4	30.7	0	0.0
		1999	20	49.3	1	1.0
		2000	16	16.6	1	1.0
		2001	7	7.1	1	1.0
		2002	1	1.0	2	12.4
		2003	1	5.3	0	0.0
		2004	1	5.8	1	7.9
		2005	0	0.0	2	10.9
		2006	1	1.0	0	0.0
		2007	0	0.0	0	0.0
		2008	1	6.5	0	0.0
		2009	1	1.8	1	10.2
		2010	3	12.8	1	15.5

Table 2. Observed Number and Mark Expansion of ESA-listed CWT salmon bycatch of the GOA and BSAI groundfish fisheries

 by ESU by year.

Attachment 5, Table 2 continued

C. Upper Colum	bia River spring Chinook ESU		G	DA	BSAI		
Listing Status ESU Name		Run Year	Observed Number	Mark Expansion	Observed Number	Mark Expansion	
Pre-listing	Upper Columbia River spring	1984	0	0.0	0	0.0	
	Chinook	1985	0	0.0	0	0.0	
		1986	0	0.0	0	0.0	
		1987	0	0.0	0	0.0	
		1988	0	0.0	0	0.0	
		1989	0	0.0	0	0.0	
		1990	0	0.0	0	0.0	
		1991	0	0.0	0	0.0	
		1992	0	0.0	0	0.0	
		1993	0	0.0	0	0.0	
		1994	0	0.0	0	0.0	
		1995	0	0.0	0	0.0	
		1996	0	0.0	0	0.0	
Post-listing	Upper Columbia River spring	1997	0	0.0	0	0.0	
	Chinook	1998	1	1.0	0	0.0	
		1999	0	0.0	0	0.0	
		2000	0	0.0	0	0.0	
		2001	0	0.0	0	0.0	
		2002	0	0.0	0	0.0	
		2003	0	0.0	0	0.0	
		2004	0	0.0	0	0.0	
		2005	0	0.0	0	0.0	
		2006	0	0.0	0	0.0	
		2007	0	0.0	0	0.0	
		2008	0	0.0	0	0.0	
		2009	0	0.0	0	0.0	
		2010	0	0.0	0	0.0	

Table 2. Observed Number and Mark Expansion of ESA-listed CWT salmon bycatch of the GOA and BSAI groundfish fisheries

 by ESU by year.

Attachment 5 continued

Table 3. Observed Number and Mark Expansion of ESA-listed CWT salmon captured in
GOA research surveys, post-listing, 1991-2010. No ESUs were ever captured in GOA
research surveys pre-listing, and no ESA-listed CWT salmon have ever
been recovered in BSAI research surveys.

		GOA				
Listing Status	ESU Name	Observed Number	Mark expansion			
Post-listing	Lower Columbia River Chinook	3	6.5			
	Puget Sound Chinook	1	1.0			
	Snake River spring/summer Chinook	5	9.2			
	Upper Columbia River spring Chinook	4	4.1			
	Upper Willamette River Chinook	11	72.0			
	Snake River Basin steelhead	1	1.0			

Source: NMFS Alaska Fisheries Science Center Auke Bay Laboratories, Adrian Celewycz, 11/2011

Table 4. Observed Number and Mark Expansion of ESA-listed CWT salmon captured in GOAresearch surveys by ESU, by run year, post-listing, 1991-2010. No ESUs were evercaptured in GOA research surveys pre-listing, and no ESA-listed CWT salmonhave ever been recovered in BSAI research surveys.

A. Lower Col	umbia River Chinook ES	U	G	OA
Listing Status	ESU Name	Run Year	Observed Number	Mark expansion
Post-listing	Lower Columbia River	1997	0	0.0
	Chinook	1998	1	4.5
		1999	1	1.0
		2000	0	0.0
		2001	1	1.0
		2002	0	0.0
		2003	0	0.0
		2004	0	0.0
		2005	0	0.0
		2006	0	0.0
		2007	0	0.0
		2008	0	0.0
		2009	0	0.0
		2010	0	0.0

Attachment 5, Table 4 continued

Table 4. Observed Number and Mark Expansion of ESA-listed CWT salmon captured in GOA
research surveys by ESU, by run year, post-listing, 1991-2010. No ESUs
were ever captured in GOA research surveys pre-listing, and no ESA-listed CWT salmon
have ever been recovered in BSAI research surveys.

C. Snake Rive	er spring/summer Chinook ESU	GOA		
Listing Status	ESU Name	Run Year	Observed Number	Mark expansion
Post-listing	Snake River spring/summer	1992	0	0.0
	Chinook	1993	0	0.0
		1994	0	0.0
		1995	0	0.0
		1996	0	0.0
		1997	0	0.0
		1998	1	2.9
		1999	0	0.0
		2000	0	0.0
		2001	0	0.0
		2002	1	1.1
		2003	3	5.3
		2004	0	0.0
		2005	0	0.0
		2006	0	0.0
		2007	0	0.0
		2008	0	0.0
		2009	0	0.0
		2010	0	0.0

Source: NMFS Alaska Fisheries Science Center Auke Bay Laboratories, Adrian Celewycz, 11/2011

D. Upper Columi	bia River spring Chinook ESU	GC	A	
Listing Status	ESU Name	Run Year	Observed Number	Mark expansion
Post-listing	Upper Columbia River spring Chinook	1999	1	1.0
		2000	2	2.1
		2001	0	0.0
		2002	0	0.0
		2003	1	1.0
		2004	0	0.0
		2005	0	0.0
		2006	0	0.0
		2007	0	0.0
		2008	0	0.0
		2009	0	0.0
		2010*	0	0.0

Attachment 5, Table 4 continued

Table 4. Observed Number and Mark Expansion of ESA-listed CWT salmon captured in GOAresearch surveys by ESU, by run year, post-listing, 1991-2010. No ESUs were evercaptured in GOA research surveys pre-listing, and no ESA-listed CWT salmon haveever been recovered in BSAI research surveys.

E. Upper Willame	tte River Chinook ESU	GOA		
Listing Status	ESU Name	Run Year	Observed Number	Mark expansion
Post-listing	Upper Willamette River Chinook	1998	2	2.3
		1999	0	0.0
		2000	0	0.0
		2001	5	33.6
		2002	3	26.6
		2003	1	9.5
		2004	0	0.0
		2005	0	0.0
		2006	0	0.0
		2007	0	0.0
		2008	0	0.0
		2009	0	0.0
		2010	0	0.0

F. Snake River B	asin steelhead ESU	GOA			
Listing Status	ESU Name	Run Year	Observed Number	Mark expansion	
Post-listing	Snake River Basin Steelhead	1991	0	0.0	
		1992	0	0.0	
		1993	0	0.0	
		1994	0	0.0	
		1995	0	0.0	
		1996	0	0.0	
		1997	0	0.0	
		1998	1	1.0	
		1999	0	0.0	
		2000	0	0.0	
		2001	0	0.0	
		2002	0	0.0	
		2003	0	0.0	
		2004	0	0.0	
		2005	0	0.0	
		2006	0	0.0	
		2007	0	0.0	
		2008	0	0.0	
		2009	0	0.0	
		2010	0	0.0	

	Ala	ska	British (Columbia	Calif	ornia	Ore	egon	Wash	ington	Yukon	Territory	TO	TAL
run_ year	Observed Number	Mark Expansion												
1995	0	0.0	1	2.3	0	0.0	0	0.0	0	0.0	1	5.7	2	8.0
1996	2	5.7	20	261.8	0	0.0	5	6.7	0	0.0	0	0.0	27	274.2
1997	39	150.5	27	349.0	0	0.0	8	14.7	3	23.0	1	1.0	78	538.3
1998	26	82.0	28	220.3	2	16.4	1	1.0	2	11.1	2	5.2	61	335.9
1999	2	2.9	5	81.4	0	0.0	1	1.0	0	0.0	1	1.0	9	86.4
2000	2	190.3	1	1.7	0	0.0	1	1.0	0	0.0	1	1.0	5	194.1
2001	14	16.9	6	31.0	0	0.0	2	2.0	1	1.7	1	1.0	24	52.6
2002	27	32.7	18	284.8	0	0.0	21	42.8	12	31.2	1	1.0	79	392.5
2003	6	24.6	13	82.3	0	0.0	4	4.1	3	18.3	2	2.0	28	131.3
2004	16	37.2	21	122.3	0	0.0	11	115.8	6	7.7	2	2.0	56	285.1
2005	12	15.9	17	114.6	0	0.0	8	22.8	7	7.9	1	1.0	45	162.2
2006	16	38.8	8	93.7	0	0.0	6	12.9	5	5.2	1	1.0	36	151.5
2007	5	19.4	1	12.2	0	0.0	2	2.0	1	1.5	0	0.0	9	35.2
2008	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
2009	0	0.0	3	4.8	0	0.0	1	10.2	0	0.0	0	0.0	4	15.0
2010	0	0.0	2	2.9	0	0.0	4	37.9	7	9.8	0	0.0	13	50.6
TOTAL	167	617.0	171	1665.2	2	16.4	75	274.8	47	117.6	14	21.9	476	2713.0
mean	10.4	38.6	10.7	104.1	0.1	1.0	4.7	17.2	2.9	7.3	0.9	1.4	29.8	169.6
average % of														
total	35%	23%	36%	61%	0%	1%	16%	10%	10%	4%	3%	1%	100%	100%

Table 1. Observed Number and Mark Expansion of CWT Chinook salmon recovered in the bycatch of the BSAI groundfish fisheries by run year and state or province of origin, 1995 through 2010.

Attachment 6, continued

	F	Rearing Type					
Origin	Hatchery	Mixed	Wild	TOTAL			
Alaska	157	0	10	167			
British Columbia	171	0	0	171			
California	2	0	0	2			
Oregon	75	0	0	75			
Washington	45	1	1	47			
Yukon Territory	14	0	0	14			
TOTAL	464	1	11	476			
average % of total	97%	0%	2%	100%			

Table 2. Observed Number of CWT Chinook salmon recovered in the prohibited species catch of the BSAI groundfish fisheries by state or province of origin, 1995 through 2010.

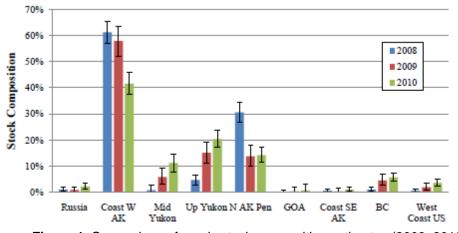

Source: NMFS Alaska Fisheries Science Center Auke Bay Laboratories, Adrian Celewycz, 11/2011

Table 3. Percent run-type of CWT Chinook salmon recovered in the prohibited species catch of the BSAI groundfish fisheries by state or province of origin, 1995 through 2010.

	Run-type							
Origin	Spring	Summer	Fall	Winter	Late Fall	Late Fall Upriver Bright	TOTAL	
Alaska	99%	1%	0%	0%	0%	0%	100%	
British Columbia	20%	37%	43%	0%	0%	0%	100%	
California	0%	0%	100%	0%	0%	0%	100%	
Oregon	27%	0%	69%	3%	0%	1%	100%	
Washington	17%	4%	77%	0%	0%	2%	100%	
Yukon Territory	50%	29%	14%	0%	7%	0%	100%	
Mean	40%	18%	41%	1%	0%	1%	100%	

 Table 1. Age structure of CWT Chinook salmon recovered in the bycatch of the BSAI and GOA groundfish fisheries, 1995–2010, excluding all stocks of Alaska origin.

Fishery	Age-2	Age-3	Age-4	Age-5	Age-6	TOTAL
BSAI	10%	49%	34%	7%	1%	100%
GOA	8%	57%	30%	5%	0%	100%

Figure 1. Comparison of yearly stock composition estimates (2008–2010) based on available genetic samples from the Bering Sea Chinook salmon bycatch. The same genetic baseline and general regional groupings were used in all analyses. GOA group consists of combined values for NW GOA, Copper, and NE GOA. BAYES 95% credible intervals are plotted for yearly estimates. Source: Guthrie et al. 2012

16

	Alaska		British (sh Columbia		daho		Oregon		Washington		TOTAL	
run year	Observed Number	Mark Expansion											
1995	4	11.9	17	177.3	0	0.0	4	7.0	2	2.0	27	198.2	
1996	14	92.4	10	152.9	0	0.0	3	3.5	2	2.0	29	250.7	
1997	2	17.4	12	82.9	0	0.0	4	10.6	1	3.7	19	114.6	
1998	30	157.8	50	585.3	1	1.0	10	55.2	9	19.0	100	818.3	
1999	45	244.3	51	295.9	0	0.0	32	76.7	17	127.9	145	744.7	
2000	24	224.9	18	38.1	0	0.0	32	50.0	10	16.2	84	329.1	
2001	10	100.2	6	74.8	0	0.0	12	16.5	4	4.0	32	195.6	
2002	10	47.2	5	113.0	0	0.0	4	4.3	3	3.7	22	168.2	
2003	2	22.4	2	28.6	0	0.0	4	8.3	1	1.0	9	60.3	
2004	3	30.5	4	22.0	0	0.0	5	16.9	1	1.1	13	70.6	
2005	3	33.6	4	86.5	0	0.0	2	3.1	2	2.2	11	125.4	
2006	10	58.3	7	158.3	0	0.0	2	2.1	5	14.5	24	233.1	
2007	13	99.1	3	50.9	0	0.0	2	2.1	5	21.3	23	173.3	
2008	6	52.3	1	1.0	0	0.0	3	9.3	12	12.9	22	75.5	
2009	5	41.4	2	5.2	0	0.0	2	2.8	4	4.5	13	53.9	
2010	11	93.1	4	4.0	0	0.0	9	24.8	12	23.7	36	145.6	
TOTAL	192	1326.7	196	1876.7	1	1.0	130	293.2	90	259.6	609	3757.2	
mean	12.0	82.9	12.3	117.3	0.1	0.1	8.1	18.3	5.6	16.2	38.1	234.8	
average % of													
total	32%	35%	32%	50%	0%	0%	21%	8%	15%	7%	100%	100%	

 Table 1. Observed Number and Mark Expansion of CWT Chinook salmon recovered in the bycatch of the GOA groundfish fisheries by run year and state or province of origin, 1995 through 2010.

Attachment 9, continued

Table 2. Observed Number of CWT Chinook salmon recovered in the prohibited species catch of the GOA groundfish fisheries state or province of origin, 1995 through 2010.

		Rearin			
Origin	Unknown	Hatchery	Mixed	Wild	TOTAL
Alaska	0	174	0	18	192
British Columbia	0	196	0	0	196
Idaho	1	0	0	0	1
Oregon	0	130	0	0	130
Washington	0	76	11	3	90
TOTAL	1	576	11	17	605
average % of total	0%	95%	2%	3%	100%

Source: NMFS Alaska Fisheries Science Center Auke Bay Laboratories, Adrian Celewycz, 11/2011

Table 3. Percent run-type of CWT Chinook salmon recovered in the prohibited species ca	tch of
the GOA groundfish fisheries by state or province of origin, 1995 through 2010.	

	Run-type	Run-type							
Origin	Spring	Summer	Fall	Winter	Late Fall	Late Fall Upriver Bright	TOTAL		
Alaska	99%	1%	0%	0%	0%	0%	100%		
British Columbia	27%	41%	32%	0%	0%	0%	100%		
Oregon	54%	0%	45%	2%	0%	0%	100%		
Washington	8%	30%	54%	0%	4%	3%	100%		
Mean	48%	20%	31%	0%	1%	1%	100%		

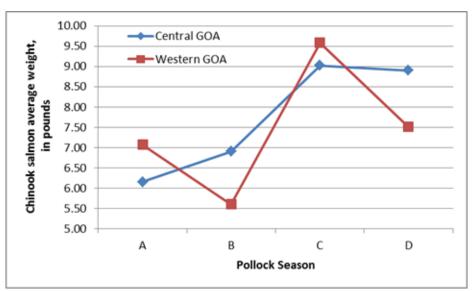


Figure 1. Average weight of Chinook salmon prohibited species catch in the groundfish fisheries in the Western and Central GOA, during the time period of the GOA pollock seasons, based on observer data from 2001 through 2010. Source: NMFS 2011.

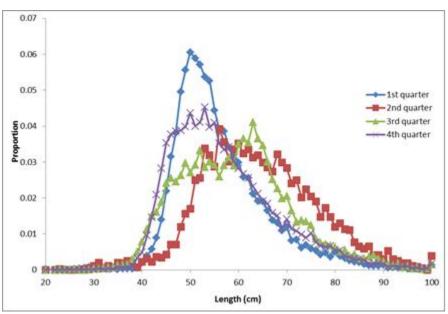


Figure 2. Length frequency of Chinook salmon prohibited species catch in GOA groundfish fisheries, by quarter (January–March, April–June, July–September, October–December), based on available observer samples from 1987 through 2010. Source: NMFS 2011.