SPINNER DOLPHIN (Stenella longirostris): Hawaiian Stock # STOCK DEFINITION AND GEOGRAPHIC RANGE Spinner dolphins are found N35 throughout the world in tropical and warm-temperate waters (Perrin and Gilpatrick 1994). They are common and abundant throughout the entire Hawaiian archipelago (Shallenberger 1981; Norris and Dohl 1980; Norris et al. 1994), and 26 strandings have been reported Recent sighting (Maldini 2005). locations from a 2002 shipboard survey of waters within the U.S. Exclusive Economic Zone (EEZ) of the main Hawaiian Islands (Barlow 2003) are shown in Figure 1. There is some suggestion from an intensive study of spinner dolphins off the Kona Coast of Hawaii that the waters surrounding this island may have a large, relatively stable "resident" population (Norris et al. 1994). Currently, it is not known whether spinner dolphins regularly move between islands or island groups, or whether separate populations may exist. **Figure 1.** Spinner dolphin sighting locations during the 2002 shipboard cetacean survey of U.S. EEZ waters surrounding the Hawaiian Islands (Barlow 2003; see Appendix 2 for details on timing and location of survey effort). Outer line indicates approximate boundary of survey area and U.S. EEZ. Hawaiian spinner dolphins boundary of survey area and U.S. EEZ. belong to a stock that is separate from those involved in the tuna purse-seine fishery in the eastern tropical Pacific (Perrin 1975; Dizon et al. 1994). The Hawaiian form is referable to the subspecies *S. longirostris longirostris*, which occurs pantropically (Perrin 1990). For the Marine Mammal Protection Act (MMPA) stock assessment reports, there is a single Pacific management stock including only animals found within the U.S. EEZ of the Hawaiian Islands. Spinner dolphins involved in eastern tropical Pacific tuna purse-seine fisheries are managed separately under the MMPA. #### POPULATION SIZE Although spinner dolphins are clearly among the most abundant cetaceans in Hawaiian waters, previously available population estimates apply only to the west coast of Hawaii. Norris et al. (1994) photo-identified 192 individuals along the west coast of Hawaii and estimated 960 animals for this area in 1979-1980. Östman (1994) photoidentified 677 individual spinner dolphins in the same area from 1989 to 1992. Using the same estimation procedures as Norris et al. (1994), Östman (1994) estimated a population size of 2,334 for his study area along the Kona coast of Hawaii. As part of the Marine Mammal Research Program of the Acoustic Thermometry of Ocean Climate (ATOC) study, a total of twelve aerial surveys were conducted within about 25 nmi of the main Hawaiian Islands in 1993, 1995 and 1998. An abundance estimate of 3,184 (CV=0.37) spinner dolphins was calculated from the combined survey data (Mobley et al. 2000). This study underestimated the total number of spinner dolphins within the U.S. EEZ off Hawaii, because areas around the Northwestern Hawaiian Islands (NWHI) and beyond 25 nautical miles from the main islands were not surveyed. Furthermore, the data on which this estimate was based are now over 5 years old. A 2002 shipboard line-transect survey of the entire Hawaiian Islands EEZ resulted in an abundance estimate of 2,805 (CV=0.66) spinner dolphins (Barlow 2003). This is currently the best available abundance estimate for this stock, but it may be negatively biased because relatively little survey effort occurred in nearshore areas where these dolphins are abundant. Nearshore aerial surveys are currently being conducted for this species. ### **Minimum Population Estimate** The log-normal 20th percentile of the 2002 abundance estimate is 1,690 spinner dolphins. # **Current Population Trend** No data on current population trend are available. #### **CURRENT AND MAXIMUM NET PRODUCTIVITY RATES** No information on current or maximum net productivity rate is currently available for the Hawaiian stock. #### POTENTIAL BIOLOGICAL REMOVAL The potential biological removal (PBR) level for this stock is calculated as the minimum population size (1,690) <u>times</u> one half the default maximum net growth rate for cetaceans (½ of 4%) <u>times</u> a recovery factor of 0.50 (for a species of unknown status with no estimated fishery mortality or serious injury within the U.S. EEZ of the Hawaiian Islands; Wade and Angliss 1997), resulting in a PBR of 17 spinner dolphins per year. # **HUMAN-CAUSED MORTALITY AND SERIOUS INJURY**Fishery Information Information on fishery-related mortality of cetaceans in Hawaiian waters is limited, but the gear types used in Hawaiian fisheries are responsible for marine mammal mortality and serious injury in other fisheries throughout U.S. waters. Gillnets appear to capture marine mammals wherever they are used, and float lines from lobster traps and longlines can be expected to occasionally entangle whales (Perrin et al. 1994). In Hawaii, some entanglements of spinner dolphins have been observed (Nitta and Henderson 1993: NMFS/PIR. unpublished data), but no estimate of annual human-caused mortality and serious injury is available, because the nearshore gillnet fisheries are not observed or monitored. Interactions with cetaceans have been reported for all Hawaiian pelagic fisheries (Nitta and Henderson 1993). Between 1994 and 2002, two spinner dolphins were observed hooked or entangled in the Hawaii-based longline fishery, with approximately 4-25% of all effort observed (Forney 2004). During the 905 observed trips with 11,014 sets, the average interaction rate of spinner dolphins was one animal per 453 fishing **Figure 2.** Locations of observed spinner dolphin takes (filled diamonds) and possible takes of this species (open diamond) in the Hawaii-based longline fishery, 1994-2002. Solid lines represent the U.S. EEZ. Set locations in this fishery are summarized in Appendix 1. trips, or one animal per 5,507 sets. Neither of the animals caught was considered seriously injured (Forney 2004), based on an evaluation of the observer's description of the interaction and following established guidelines for assessing serious injury in marine mammals (Angliss and Demaster 1998). The average 5-yr estimate of annual mortality and serious injury within the Hawaiian Islands EEZ during 1998-2002 is zero spinner dolphins. One additional unidentified cetacean, which may have been a spinner dolphin, was taken in this fishery within the U.S. EEZ surrounding Palmyra Island (Figure 2, Forney 2004). Since 2001, the Hawaii-based longline fishery has undergone a series of regulatory changes, primarily to protect sea turtles (NMFS 2001). Potential impacts of these regulatory changes on the rate of spinner dolphin takes are unknown. Interaction rates between dolphins and the NWHI bottomfish fishery have been estimated based on studies conducted in 1990-1993, indicating that an average of 2.67 dolphin interactions, most likely involving bottlenose and rough-toothed dolphins, occurred for every 1000 fish brought on board (Kobayashi and Kawamoto 1995). Fishermen claim interactions with dolphins who steal bait and catch are increasing. It is not known whether these interactions result in serious injury or mortality of dolphins, nor whether spinner dolphins are involved. # STATUS OF STOCK The status of spinner dolphins in Hawaiian waters relative to OSP is unknown, and there are insufficient data to evaluate trends in abundance. A habitat issue of increasing concern is the potential effect of swim-with-dolphin programs and other tourism activities on spinner dolphins around the main Hawaiian Islands. Spinner dolphins are not listed as "threatened" or "endangered" under the Endangered Species Act (1973), nor as "depleted" under the MMPA. The Hawaiian stock of spinner dolphins is not considered a strategic stock under the 1994 amendments to the MMPA, because the estimated rate of mortality and serious injury within the Hawaiian Islands EEZ is zero. However, there is no systematic monitoring of gillnet fisheries that may take this species. Insufficient information is available to determine whether the total fishery mortality and serious injury for spinner dolphins is insignificant and approaching zero mortality and serious injury rate. # **REFERENCES** - Angliss, R. P. and D. P. DeMaster. 1998. Differentiating Serious and Non_Serious Injury of Marine Mammals Taken Incidental to Commercial Fishing Operations: Report of the Serious Injury Workshop 1_2 April 1997, Silver Spring, Maryland. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-13. 48 pp. - Barlow, J. 2003. Cetacean abundance in Hawaiian waters during summer/fall 2002. Admin. Rep. LJ-03-13. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92038. - Dizon, A. E., W. F. Perrin, and P. A. Akin. 1994. Stocks of dolphins (*Stenella* spp. and *Delphinus delphis*) in the eastern tropical Pacific: a phylogeographic classification. NOAA Tech. Rep. NMFS 119, 20 pp. - Forney, K.A. 2004. Estimates of cetacean mortality and injury in two U.S. Pacific longline fisheries, 1994_2002. Admin. Rep. LJ-04-07. Southwest Fisheries Science Center, National Marine Fisheries Service, 8604 La Jolla Shores Drive, La Jolla, CA 92037. 17 pp. - Kobayashi, D. R. and K. E. Kawamoto. 1995. Evaluation of shark, dolphin, and monk seal interactions with Northwestern Hawaiian Island bottomfishing activity: a comparison of two time periods and an estimate of economic impacts. Fisheries Research 23: 11-22. - Maldini, D., L. Mazzuca, and S. Atkinson. 2005. Odontocete stranding patterns in the Main Hawaiian Islands (1937-2002): How do they compare with live animal surveys? Pacific Science 59(1):55-67. - Mobley, J. R., Jr, S. S. Spitz, K. A. Forney, R. A. Grotefendt, and P. H. Forestall. 2000. Distribution and abundance of odontocete species in Hawaiian waters: preliminary results of 1993-98 aerial surveys. Admin. Rep. LJ-00-14C. Southwest Fisheries Science Center, National Marine Fisheries Service, P.O. Box 271, La Jolla, CA 92038. 26 pp. - Nitta, E. and J. R. Henderson. 1993. A review of interactions between Hawaii's fisheries and protected species. Mar. Fish. Rev. 55(2):83-92. - Norris, K. S., B. Würsig, R. S. Wells, and M. Würsig. 1994. The Hawaiian Spinner Dolphin. University of California Press, 408 pp. - Norris, K. S. and T. P. Dohl. 1980. Behavior of the Hawaiian spinner dolphin, *Stenella longirostris*. Fish. Bull. 77:821-849. - NMFS, Pacific Islands Region, Observer Program, 1602 Kapiolani Blvd, Suite 1110, Honolulu, HI 96814. - NMFS 2001. Western Pacific Pelagic Fisheries Biological Opinion. Available from Pacific Islands Region, 1602 Kapiolani Blvd, Suite 1110, Honolulu, HI 96814 (http://swr.nmfs.noaa.gov/pir). - Östman, J. S. O. 1994. Social organization and social behavior of Hawaiian spinner dolphins (*Stenella longirostris*). Ph.D. dissertation, University of California, Santa Cruz, 114 pp. - Perrin, W. F. 1975. Variation of spotted and spinner porpoise (genus *Stenella*) in the eastern tropical Pacific and Hawaii. Bull. Scripps Inst. Oceanogr. 21, 206 pp. - Perrin, W. F. 1990. Subspecies of *Stenella longirostris* (Mammalia: Cetacea: Delphinidae). Proc. Biol. Soc. Wash. 103:453-463. - Perrin, W. F. and J. W. Gilpatrick, Jr. 1994. Spinner dolphin *Stenella longirostris* (Gray, 1828). *In*: S. H. Ridgway and R. Harrison (eds.), Handbook of Marine Mammals, Vol.5: The First Book of Dolphins, pp. 99-128. Academic Press, 416 pp. - Perrin, W.F., G. P. Donovan and J. Barlow. 1994. Gillnets and Cetaceans. Rep. Int. Whal. Commn., Special Issue 15, 629 pp. - Shallenberger, E.W. 1981. The status of Hawaiian cetaceans. Final report to U.S. Marine Mammal Commission. MMC-77/23, 79pp. - Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.