
COMMON BOTTLENOSE DOLPHIN (*Tursiops truncatus truncatus*): California/Oregon/Washington Offshore Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bottlenose dolphins are distributed world-wide in tropical and warm-temperate waters. In many regions, including California, separate coastal and offshore populations are known (Walker 1981; Ross and Cockcroft 1990; Van Waerebeek et al. 1990: Lowther 2006. On surveys conducted off California. offshore bottlenose dolphins have been found at distances greater than a few kilometers from the mainland and throughout the Southern California Bight. They have also been documented in offshore waters as far north as about 41°N (Figure 1), and they may range into Oregon and Washington warm-water periods. waters during Sighting records off California and Baja California (Lee 1993; Mangels and Gerrodette 1994) suggest that offshore bottlenose dolphins have a continuous distribution in these two regions. Based on conducted during aerial survevs winter/spring 1991-92 (Forney et al. 1995) and shipboard surveys conducted in summer/fall 1991 (Barlow 1995), no seasonality in distribution is apparent (Forney and Barlow 1998). Offshore bottlenose dolphins are not restricted to U.S. waters, but cooperative management agreements with Mexico exist only for the tuna purse seine fishery and not for other fisheries which may take this species (e.g. gillnet fisheries). Therefore, the management stock includes only animals found within U.S. waters. For the Marine Mammal Protection Act (MMPA) stock assessment reports, bottlenose dolphins within the Pacific U.S. Exclusive

Figure 1. Offshore bottlenose dolphin sightings based on shipboard surveys off California, Oregon, and Washington, 1991-2008 (see Appendix 2 for data sources and information on timing and location of survey effort). Dashed line represents the U.S. EEZ, thin lines indicate completed transect effort of all surveys combined.

Economic Zone are divided into seven stocks: 1) California coastal stock, 2) California, Oregon and Washington offshore stock (this report), and five stocks in Hawaiian waters: 3) Kauai/Niihau, 4) Oahu, 5) 4-Islands (Molokai, Lanai, Maui, Kahoolawe), 6) Hawaii Island and 7) the Hawaiian Pelagic Stock.

POPULATION SIZE

The most recent shipboard surveys conducted within 300 nmi of the coasts of California, Oregon, and Washington were in 2005 (Forney 2007) and 2008 (Barlow 2010). Because the distribution of bottlenose dolphins appears to vary interannually and they may spend time outside the U.S. Exclusive Economic Zone, a multi-year average abundance estimate is the most appropriate for management within U.S. waters. The most comprehensive multi-year average abundance is the geometric mean abundance estimate for California, Oregon and Washington waters based on the 2005 and 2008 ship surveys, or 1,006 (CV=0.48) offshore bottlenose dolphins (Forney 2007, Barlow 2010).

Minimum Population Estimate

The log-normal 20th percentile of the 2005-2008 average abundance estimate is 684 offshore bottlenose dolphins.

Current Population Trend

Trend analyses for this stock have not been performed to date, while other stocks with more urgent conservation concerns are analyzed (e.g., Moore and Barlow 2011, 2013).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

No information on current or maximum net productivity rates is available for this population of offshore bottlenose dolphins.

POTENTIAL BIOLOGICAL REMOVAL

The potential biological removal (PBR) level for this stock is calculated as the minimum population size (684) <u>times</u> one half the default maximum net growth rate for cetaceans ($\frac{1}{2}$ of 4%) <u>times</u> a recovery factor of 0.40 (for a species of unknown status with fishery mortality CV>0.80; Wade and Angliss 1997), resulting in a PBR of 5.5 offshore bottlenose dolphins per year.

HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

New Serious Injury Guidelines

NMFS updated its serious injury designation and reporting process, which uses guidance from previous serious injury workshops, expert opinion, and analysis of historic injury cases to develop new criteria for distinguishing serious from non-serious injury (Angliss and DeMaster 1998, Andersen *et al.* 2008, NOAA 2012). NMFS defines serious injury as an *"injury that is more likely than not to result in mortality"*. Injury determinations for stock assessments revised in 2013 or later incorporate the new serious injury guidelines, based on the most recent 5-year period for which data are available.

Fishery Information

A summary of known fishery mortality and serious injury for this stock of bottlenose dolphin is shown in Table 1. During 2007-2011, two offshore stock bottlenose dolphins were seriously injured in commercial fishing gear (Jannot et al. 2011, Carretta et al. 2013) and one was killed in commercial fishing gear (Carretta and Enriquez 2012). The fisheries involved included sablefish fixed longline gear (Jannot et al. 2011), the California swordfish drift gillnet fishery (Carretta and Enriquez 2012), and a stranding record from an unknown fishery interaction (Carretta et al. 2013). Bottlenose dolphins are rarely observed entangled in the California swordfish drift gillnet fishery and potential reductions in bycatch resulting from acoustic pinger use in this fishery are unknown, due to small sample sizes (Barlow and Cameron 2003, Carretta and Barlow 2011). The average annual fishery-related serious injury and mortality of offshore stock bottlenose dolphins for the period 2007-2011 is ≥ 2.0 animals/yr (Table 1).

Gillnets have been documented to entangle marine mammals off Baja California (Sosa-Nishizaki et al. 1993), but no recent bycatch data from Mexico are available.

Table 1. Summary of available information on the incidental mortality and injury of bottlenose dolphins (California/ Oregon/Washington Offshore Stock) in commercial fisheries that might take this species. Mean annual takes are based on 2007-2011 data unless noted otherwise (Carretta and Enriquez 2009a, 2009b, 2010, 2012a, 2012b, Jannot et al. 2011).

Fishery Name	Data Type	Year(s)	Percent Observer Coverage	Observed Mortality (and Serious Injury)	Estimated Annual Mortality and Serious Injury (CV)	Mean Annual Takes (CV in parentheses)
CA/OR thresher shark/swordfish drift gillnet fishery		2007	16.4%	0	0	
	observer	2008	13.5%	0	0	
		2009	13.3%	0	0	1.6 (0.96)
		2010	11.9%	1	8 (0.96)	
		2011	18.8%	0	0	

Fishery Name	Data Type	Year(s)	Percent Observer Coverage	Observed Mortality (and Serious Injury)	Estimated Annual Mortality and Serious Injury (CV)	Mean Annual Takes (CV in parentheses)
California halibut and white seabass set gillnet	observer	2007 2010 2011	17.8% 12.5% 8%	0 0 0	0	0
California yellowtail, barracuda, and white seabass drift gillnet fishery	observer	2010 2011	5.0% 3.3%	0 0	0	0
CA lobster trap/pot	At-sea disentanglement	2008	n/a	0(1)	1 (n/a)	0.2 (n/a)
Sablefish offshore fixed gear	At-sea disentanglement	2005 2006 2007 2008 2009	0.5% 1.5% 3.4% 1.5% 2.4%	0 0 0 0 0(1)	1 (n/a)*	0.2 (n/a)
Ainimum total annual takes						

*No estimate of bycatch was derived from the one observation of a bottlenose dolphin released injured from sablefish gear (Jannot et al. 2009).

Offshore bottlenose dolphins are often associated with Risso's dolphins and pilot whales, for which mortality has been documented in the squid purse seine fishery off Southern California (Heyning et al. 1994). Based on this association, offshore bottlenose dolphins may also have experienced some mortality in this fishery. However these would probably represent animals killed intentionally to protect catch or gear, rather than incidental kills, and such intentional takes are now illegal under the 1994 Amendment to the MMPA.

STATUS OF STOCK

The status of offshore bottlenose dolphins in California relative to OSP is not known, and there are insufficient data to evaluate trends in abundance. No habitat issues are known to be of concern for this species. They are not listed as "threatened" or "endangered" under the Endangered Species Act nor as "depleted" under the MMPA. Because average annual fishery takes (2.0/yr) are less than the calculated PBR (5.5), offshore bottlenose dolphins are not classified as a "strategic" stock under the MMPA. The total fishery mortality and serious injury for this stock is greater than 10% of the PBR and cannot be considered to be insignificant and approaching zero.

REFERENCES

- Andersen, M. S., K. A. Forney, T. V. N. Cole, T. Eagle, R. Angliss, K. Long, L. Barre, L. Van Atta, D. Borggaard, T. Rowles, B. Norberg, J. Whaley, and L. Engleby. 2008. Differentiating Serious and Non-Serious Injury of Marine Mammals: Report of the Serious Injury Technical Workshop, 10-13 September 2007, Seattle, Washington. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-39. 94 p.
- Angliss, R.P. and D.P. DeMaster. 1998. Differentiating Serious and Non-Serious Injury of Marine Mammals Taken Incidental to Commercial Fishing Operations. NOAA Tech Memo. NMFS-OPR-13, 48 p.
- Barlow, J. 2010. Cetacean abundance in the California Current from a 2008 ship-based line-transect survey. NOAA Technical Memorandum, NMFS, NOAA-TM-NMFS-SWFSC-456. 19 p.
- Barlow, J. 1995. The abundance of cetaceans in California waters. Part I: Ship surveys in summer and fall of 1991. Fish. Bull. 93:1-14.
- Barlow, J. and G. A. Cameron. 2003. Field experiments show that acoustic pingers reduce marine mammal bycatch in the California drift gillnet fishery. Marine Mammal Science 19(2):265-283.
- Carretta, J. V., S. M. Wilkin, M. M. Muto, and K. Wilkinson. 2013. Sources of human-related injury and mortality for U.S. Pacific west coast marine mammal stock assessments, 2007-2011. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-514, 83 p.

- Carretta, J.V. and L. Enriquez. 2012a. Marine mammal and seabird bycatch in California gillnet fisheries in 2010. Southwest Fisheries Science Center Administrative Report LJ-12-01. 14p.
- Carretta, J.V. and L. Enriquez. 2012b. Marine mammal and seabird bycatch in California gillnet fisheries in 2011. NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-500. 14 p.
- Carretta, J.V. and J. Barlow. 2011. Long-term effectiveness, failure rates, and "dinner bell" properties of acoustic pingers in a gillnet fishery. Marine Technology Society Journal 45:7-19.
- Carretta, J.V. and L. Enriquez. 2010. Marine Mammal and Sea Turtle Bycatch in the California/Oregon Sworfish and Thresher Shark Drift Gillnet Fishery in 2009. Southwest Fisheries Science Center, NOAA Fisheries Administrative Report LJ-10-03. 11p.
- Carretta, J.V. and L. Enriquez. 2009a. Marine mammal and seabird bycatch observed in California commercial fisheries in 2007. Administrative Report LJ-09-01, available from Southwest Fisheries Science Center, 3333 North Torrey Pines Rd., La Jolla, CA 92037. 12 p.
- Carretta, J.V. and L. Enriquez. 2009b. Marine mammal bycatch observed in the California/Oregon swordfish and thresher shark drift gillnet fishery in 2008. Administrative Report LJ-09-03, available from Southwest Fisheries Science Center, 3333 North Torrey Pines Rd., La Jolla, CA 92037. 10 p.
- Forney, K. A., J. Barlow and J. V. Carretta. 1995. The abundance of cetaceans in California waters. Part II: Aerial surveys in winter and spring of 1991 and 1992. Fish. Bull. 93:15-26.
- Forney, K.A. 2007. Preliminary estimates of cetacean abundance along the U.S. west coast and within four National Marine Sanctuaries during 2005. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-406. 27 p.
- Heyning, J. E., T. D. Lewis and C. D. Woodhouse. 1994. A note on odontocete mortality from fishing gear entanglements off Southern California. Rep. Int. Whal. Commn. Special Issue 15:439-442.
- Jannot, J., Heery, E., Bellman, M.A., and J. Majewski. 2011. Estimated bycatch of marine mammals, seabirds, and sea turtles in the US west coast commercial groundfish fishery, 2002-2009. West Coast Groundfish Observer Program. National Marine Fisheries Service, NWFSC, 2725 Montlake Blvd E., Seattle, WA 98112.
- Lee, T. 1993. Summary of cetacean survey data collected between the years of 1974 and 1985. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-SWFSC-181. 184 pp.
- Lowther, J. 2006. Genetic variation of coastal and offshore bottlenose dolphins, *Tursiops truncatus*, in the eastern North Pacific Ocean. M.S. Thesis, University of San Diego, San Diego, California, USA. 126 p.
- Mangels, K. F. and Gerrodette, T. 1994. Report of cetacean sightings during a marine mammal survey in the eastern Pacific Ocean and Gulf of California aboard the NOAA ships *McARTHUR* and *DAVID STARR JORDAN* July 28 - November 6, 1993. NOAA Tech. Memo. NMFS, NMFS-SWFSC-211. 88 pp.
- Moore, J.E. and J. Barlow. 2011. Bayesian state-space model of fin whale abundance trends from a 1991-2008 time series of line-transect surveys in the California Current. Journal of Applied Ecology 48:1195-1205.
- Moore, J.E., Barlow J.P. 2013. Declining abundance of beaked whales (family Ziphiidae) in the California Current large marine ecosystem. PLoS ONE 8(1):e52770. doi:10.1371/journal.pone.0052770.
- NOAA. 2012. Federal Register 77:3233. National Policy for Distinguishing Serious From Non-Serious Injuries of Marine Mammals. http://www.nmfs.noaa.gov/op/pds/documents/02/238/02-238-01.pdf
- Reeves, R. R. and S. Leatherwood. 1984. Live-capture fisheries for cetaceans in USA and Canadian waters, 1973-1982. Rep. Int. Whal. Commn. 34:497-507.
- Ross, G. J. B. and V. G. Cockcroft. 1990. Comments on Australian bottlenose dolphins and the taxonomic status of *Tursiops aduncus* (Ehrenberg, 1832). *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. R. Reeves). pp. 101-128. Academic Press, 653pp.
- Sosa-Nishizaki, O., R. De la Rosa Pacheco, R. Castro Longoria, M. Grijalva Chon, and J. De la Rosa Velez. 1993. Estudio biologico pesquero del pez (*Xiphias gladius*) y otras especies de picudos (marlins y pez vela). Rep. Int. CICESE, CTECT9306.
- Van Waerebeek, K., J. C. Reyes, A. J. Read, and J. S. McKinnon. 1990. Preliminary observations of bottlenose dolphins from the Pacific coast of South America. *In*: The Bottlenose Dolphin (eds. S. Leatherwood and R. R. Reeves). pp. 143-154 Academic Press, 653 pp.
- Walker, W. A. 1975. Review of the live-capture fishery for smaller cetaceans taken in Southern California waters for public display, 1966-77. J. Fish. Res. Board. Can. 32:1197-1211.

- Walker, W. A. 1981. Geographical variation in morphology and biology of bottlenose dolphins (*Tursiops*) in the eastern North Pacific. Admin. Rep. LJ-81-03C. Southwest Fisheries Science Center, National Marine Fisheries Service, La Jolla, CA 92038. 52p.
- Wade, P. R. and R. P. Angliss. 1997. Guidelines for Assessing Marine Mammal Stocks: Report of the GAMMS Workshop April 3-5, 1996, Seattle, Washington. U. S. Dep. Commer., NOAA Tech. Memo. NMFS-OPR-12. 93 pp.