Request for an Incidental Harassment Authorization Under the Marine Mammal Protection Act

Mukilteo Multimodal Project Season 4 Washington State Department of Transportation Ferries Division

April 9, 2020

Request for an Incidental Harassment Authorization

Submitted To:

National Marine Fisheries Service Office of Protected Resources 1315 East-West Highway Silver Spring, Maryland 20910-3226

Prepared By:

Washington State Ferries Richard D. Huey 2901 Third Avenue, Suite 500 Seattle, Washington 98121-3014 206-515-3721 <u>hueyr@wsdot.wa.gov</u>

Cover: Harbor seal at Mukilteo Project Site. February 2018. Tyler Graham. WSDOT/WSF.

Table of Contents

1.0	Descr	ption of the Activity	1
	1.1	Season Four Incidental Harassment Authorization Application	1
	1.2	Project Introduction	3
	1.3	Project Purpose and Need	4
	1.4	Project Setting and Land Use	4
	1.5	Project Description	4
	1.5.1	In-water Project Elements Completed in 2015/16 (Season 1)	6
	1.5.2	In-water Project Elements Completed in 2017/18 (Season 2)	6
	1.5.3	In-water Project Elements Completed in 2018/19 (Season 3)	7
	1.5.4	In-water Project Elements to be Completed in 2020/21 (Season 4)	8
	1.5.5	Durations 8	
	1.5.6	Project Schedule	9
	1.6	Project Activities	9
	1.6.1	Vibratory Hammer Driving and Removal	9
	1.7	Sound Levels and Noise Analysis	10
	1.7.1	Reference Underwater Vibratory Sound Source Levels	10
	1.7.2	Airborne Reference Sound Source Levels	13
	1.7.3	Attenuation to NMFS Thresholds	14
2.0	Dates	Duration, and Region of Activity	17
2.0	2.1	Dates	17
	2.1	Duration	
	2.2	Region of Activity	
3.0	•	es and Numbers of Marine Mammals in Area	
	3.1	Species Present	
	3.2	Pinnipeds	
	3.2.1	Harbor Seal	
	3.2.2	Northern Elephant Seal	
	3.2.3	California Sea Lion	
	3.2.4	Steller Sea Lion	
	3.3	Cetaceans	
	3.3.1	Killer Whale	.25
	3.3.2	Gray Whale28	~~
	3.3.3	Humpback Whale	
	3.3.4	Minke Whale	
	3.3.5		
	3.3.6	Dall's Porpoise	
	3.3.7	Common Bottlenose Dolphin	33
4.0	Status	and Distribution of Affected Species or Stocks	36
5.0	Type o	of Incidental take Authorization Requested	38
	5.1	Incidental take Authorization Request	
	5.2	Method of Incidental Taking	

6.0	Number of Marine Mammals that May Be Affected	40
	6.1 Estimated Duration of Pile Driving	40
	6.2 Estimated Zones of Influence/Zones of Exclusion	
	6.2.1 Zones of Influence	
	6.2.2 Zones of Exclusion/Shutdown Zones6.2.3 Airborne Zones of Influence	
	6.2.3 Airborne Zones of Influence6.3 Estimated Level B Incidental takes	
	6.4 Number of takes for Which Authorization is Requested	
7.0	Anticipated Impact on Species or Stocks	47
8.0	Anticipated Impact on Subsistence	49
9.0	Anticipated Impact on Habitat	50
	9.1 Introduction	50
	9.2 In-air Noise Disturbance to Haul Outs	50
	9.3 Underwater Noise Disturbance	
	9.4 Water and Sediment Quality	
	9.5 Passage Obstructions	
	9.6 Conclusions Regarding Impacts on Habitat	52
10.0	Anticipated Impact of Loss or Modification of Habitat	53
11.0	Mitigation Measures	
	11.1 All Construction Activities	55
	11.2 Timing Windows	
	11.3 Pile Removal BMPs	-
	11.4 Pile Driving BMPs	
	11.5 Safety Zone/Zone of Exclusion	59
12.0	Arctic Subsistence Uses, Plan of Cooperation	61
13.0	Monitoring and Reporting Plan	63
	13.1 Coordination	
	13.2 Visual Monitoring	
	13.3 Reporting Plan	64
14.0	Coordinating Research to Reduce and Evaluate Incidental take	66
15.0	Literature Cited	68

LIST OF TABLES

Table 1-1	Pile Numbers Completed/Planned by Season	2
Table 1-2	Season 4 In-water Pile Durations	9
Table 1-3	Summary of underwater vibratory sound source levels	11
Table 1-4	Injury and Disturbance Thresholds for Underwater and Airborne Noise	14
Table 1-5	Marine Mammal ZOE/Shutdown Distances	15
Table 3-1	Marine Mammal Species Potentially Present in Region of Activity	19

Table 6-1	Durations40
Table 6-2	ZOE/Shutdown and ZOI Distances/Areas41
Table 6-3	Zone of Influence summary41
Table 6-4	Zones of Exclusion/Shutdown41
Table 6-5	Level B Density Based Takes
Table 7-1	Level B Acoustical Harassment take Request Percent of Total Stock47

LIST OF FIGURES

Figure 1-1	Washington State Ferry System Route Map	3
Figure 1-2	Location of Mukilteo Ferry Terminal and nearby features	5
Figure 1-3	Vibratory Hammer Driving a Steel Pile1	0
Figure 1-4	Vibratory Timber Pile Removal ZOI1	2
Figure 1-5	Vibratory Steel Pile Removal/Driving ZOI1	3
Figure 3-1	Pinniped haul outs in the Mukilteo project vicinity2	2

APPENDICES

Appendix A	Project Sheets (Electronic)
Appendix B	Mukilteo Multimodal Phase 1 Timber Vibratory Removal – Zone of Influence Technical Memorandum (Electronic)
Appendix C	Mukilteo Multimodal Phase 2 30-inch Steel Pile Vibratory Installation – Zone of Influence Technical Memorandum (Electronic)
Appendix D	NMFS Optional Spreadsheet Level A/Level B ZOI Calculations (Electronic)
Appendix E	Mukilteo Multimodal Project Marine Mammal Monitoring Data 2017-2020 (Electronic)
Appendix F	Mukilteo Multimodal Project Marine Mammal Monitoring Data 2015-2020 ZOI-1 Timber Removal Distance (Electronic)
Appendix G	The Whale Museum Sightings Report (Electronic)
Appendix H	ArcMap Steel Vibratory Map Package (Electronic)
Appendix I	ArcMap Timber Vibratory Map Package (Electronic)
Appendix J	Marine Mammal Monitoring Plan

Abbreviations and Acronyms

BMP	best management practices
CA-OR-WA	California-Oregon-Washington
CFR	Code of Federal Regulations
dB	decibels
DPS	Distinct Population Segment
DPS	dynamic positioning system
Ecology	Washington State Department of Ecology
ESA	Endangered Species Act
FR	Federal Register
HPA	Hydraulic Project Approval
Hz	hertz
IHA	Incidental Harassment Authorization
IWC	International Whaling Commission
kHz	kilohertz
kJ	kilojoules(s)
km	kilometer(s)
m	meters
MLLW	Mean Low-Low Water
MHHW	Mean High-High Water
MM	mitigation measure
MMPA	Marine Mammal Protection Act of 1972
NMFS	National Marine Fisheries Service
NMML	National Marine Mammal Laboratory
NOAA	National Oceanographic Atmospheric Administration
NOAA Fisheries	National Oceanic Atmospheric Administration/National Marine
	Fisheries Service
NTU	nephelometric turbidity units
OHW	ordinary high water
PSAMP	Puget Sound Ambient Monitoring Program

Request for an Incidental Harassment Authorization

RCW	Revised Code of Washington
RL	Received Level
RMS	root mean square
SAR	Stock Assessment Report
SEL	Sound Exposure Level
SL	Source Level
SPCC	Spill Prevention, Control, and Countermeasures Plan
SPL	Sound Pressure Level
TL	Transmission Loss
TTS	Temporary Threshold Shift
μΡα	micro-Pascals
UHMW	Ultra High Molecular Weight
USFWS	United States Fish and Wildlife Service
WAC	Washington Administrative Code
WDFW	Washington Department of Fish and Wildlife
WSDOT	Washington State Department of Transportation
WSF	Washington State Department of Transportation Ferries Division
ZOE	Zone of Exclusion
ZOI	Zone of Influence

1.0 Description of the Activity

A detailed description of the specific activity or class of activities that can be expected to result in incidental taking of marine mammals.

1.1 Season Four Incidental Harassment Authorization Application

The Mukilteo Multimodal Project consists of four in-water construction seasons:

- Season 1 was the demolition of the Tank Farm Pier, completed in 2015/16.
- No in-water work took place in 2016/17.
- Season 2 included ground improvement, trestle and terminal building foundation piles, completed in 2017/18.
- Season 3 (currently underway) consist of the installation of the remaining new terminal permanent in-water piles, which will be completed by 2/15/19.
- Season 4 will take place in 2019/20 (the subject of this application), and will consist of the removal of temporary construction piles from the new terminal, driving piles to secure floating dolphin anchor chains, and the removal of the existing Mukilteo terminal timber piles.

Pile numbers completed and planned by season are presented in Table 1-1.

Method	Pile Size (inch)	Season 1 Completed	Season 2 Completed	Season 3 Planned (underway)	Season 4 Planned	Comment	
Vibratory Drive	12 (H-piles)	0	134	0	0 Permanent		
	24	0	4	65	0	Temporary	
	24	0	0	26	0	Permanent	
	30	0	25	16	4	Permanent	
	36	0	0	6	0	Permanent	
	78	0	0	2	0	Permanent	
	120	0	0	1	0	Permanent	
Vibratory Removal	12 (timber)	3,515	0	0	290	Demolition	
	24	0	4	65	69	Temporary	
	30	0	0	9	0	Permanent	
Impact Drive	24	0	4	65	0	Proofed for load- bearing, Temporary	
	30	0	25	0	0	Permanent	

Table 1-1 Pile Numbers Completed/Planned by Season

1.2 Project Introduction

The Washington State Department of Transportation (WSDOT) Ferries Division (WSF) operates and maintains 19 ferry terminals and one maintenance facility, all of which are located in either Puget Sound or the San Juan Islands (Georgia Basin) (Figure 1-1). Since its creation in 1951,

Figure 1-1 Washington State Ferry System Route Map

WSF has become the largest ferry system in the United States (U.S.), operating 28 vessels on 10 routes with over 500 sailings each day.

To improve, maintain, and preserve the terminals, WSF conducts construction, repair and maintenance activities as part of its regular operations. One of these projects is the relocation of the Mukilteo ferry terminal, and is the subject of this Incidental Harassment Authorization (IHA) request. The proposed project will occur in marine waters that support several marine mammal species. The Marine Mammal Protection Act of 1972 (MMPA) prohibits the taking of marine mammals, which is defined as to "harass, hunt, capture or kill, or attempt to harass, hunt, capture or kill," except under certain situations. Section 101 (a) (5)(D) allows for the issuance of an IHA, provided an activity results in negligible impacts on marine mammals and would not adversely affect subsistence use of these animals.

The project's timing and duration and specific types of activities (such as pile driving) may result in the incidental taking by acoustical harassment (Level B take) of marine mammals protected under the MMPA. WSDOT/WSF is requesting an IHA for eleven marine mammal species (harbor seal, Northern Elephant seal California sea lion, Steller sea lion, Transient killer whale, harbor porpoise, Dall's porpoise, common bottlenose dolphin, gray whale, humpback whale, and Minke whale) that may occur in the vicinity of the project.

1.3 Project Purpose and Need

The WSDOT/WSF and the Federal Transit Administration (FTA) are proposing the Mukilteo Multimodal Project to improve the operations and facilities serving the mainland terminus of the Mukilteo-Clinton ferry route in Washington State. The ferry route is part of State Route (SR) 525, the major transportation corridor crossing Possession Sound, the portion of Puget Sound that separates Island County (Whidbey Island) from the central Puget Sound mainland. In 2011 the Mukilteo-Clinton route was WSF's busiest route for vehicle traffic and had the third highest total annual ridership, serving almost four million total riders.

The purpose of the Mukilteo Multimodal Project is to provide safe, reliable, and effective service and connection for transportation, transit, high occupancy vehicles (HOV), pedestrians, and bicyclists traveling between Island County and the Seattle/Everett metropolitan area and beyond. The Mukilteo ferry terminal has not had significant improvements for almost 30 years and needs key repairs. The existing facility is deficient in a number of aspects, such as safety, multimodal connectivity, capacity, and the ability to support the goals of local and regional long-range transportation and comprehensive plans. The project is intended to:

- Reduce conflicts, congestion, and safety concerns for pedestrians, bicyclists, and motorists by improving local traffic and safety at the terminal and the surrounding area that serves these transportation needs.
- Provide a terminal and supporting facilities with the infrastructure and operating characteristics needed to improve the safety, security, quality, reliability, efficiency, and effectiveness of multimodal transportation.
- Accommodate future demand projected for transit, HOV, pedestrian, bicycle, and general purpose traffic.

1.4 Project Setting and Land Use

The Mukilteo Ferry Terminal is located in the City of Mukilteo, Snohomish County, Washington. The terminal is located in Township 28 North, Range 4 East, Section 3, in Possession Sound. The new terminal would be approximately 1,700 feet (ft.) east of the existing terminal in Township 28N, Range 4E, Section 33 (Figure 1-2). Land use in the Mukilteo area is a mix of residential, commercial, industrial, and open space and/or undeveloped lands.

1.5 Project Description

WSF is proposing to relocate the Mukilteo Ferry Terminal approximately one-third of a mile east of the existing terminal. The Mukilteo terminal has not had significant improvements since the early 1980s and components of the facility are aging and do not meet current seismic standards. The current terminal layout makes it difficult for passengers to get in and out of the terminal and contributes to traffic congestion, safety concerns and conflicts between vehicle and pedestrian traffic. The new terminal will improve operations and multimodal connections and safety.

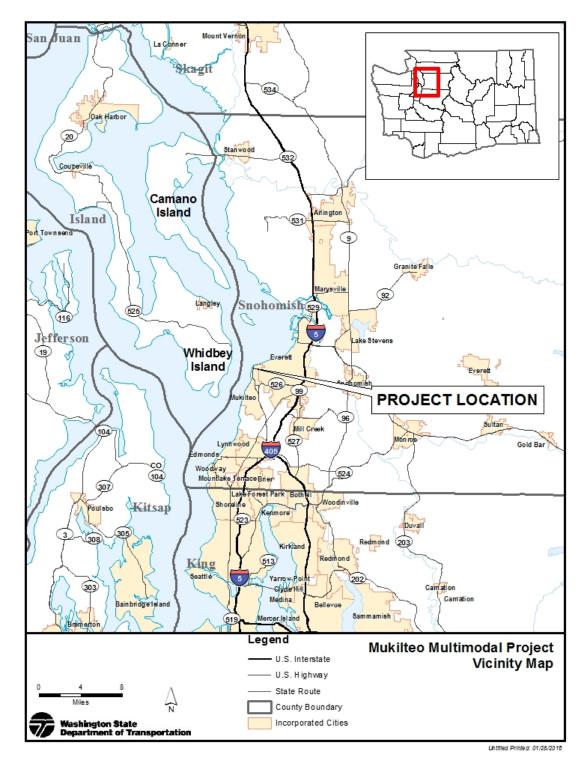


Figure 1-2 Location of Mukilteo Ferry Terminal and nearby features

Phase 1 of the project, the removal of the tank farm pier, is complete. Phase 2 of the project is construction of the new terminal, which includes a new passenger and maintenance building, a supervisor's building, four new toll booths and a new transit center. Select project sheets are provided in Appendix A.

1.5.1 In-water Project Elements Completed in 2015/16 (Season 1)

1.5.1.1 Tank Farm Pier Removal and Navigation Channel

The U.S. Air Force built the Tank Farm Pier to load military ships and transport fuel, and it was in operation from 1950 until the late 1970's. Removal of the pier was necessary to construct the new ferry terminal.

The pier covered approximately 3.17 acres over-water and contained approximately 3,515 12inch diameter creosote-treated piles, which were removed with a vibratory hammer or by direct pull. Demolition of the pier removed over 4,000 tons of creosote-treated timber from the aquatic environment.

Though demolition was to take approximately ten months spanning two in-water work windows, it was completed ahead of schedule, in eight months and spanned only one in-water work window (2015/16). Removal of the pier took place from land and from a barge containing a derrick, crane and other necessary equipment.

Dredging for a navigation channel for the ferry approach to the new terminal was also completed during this work window.

1.5.2 In-water Project Elements Completed in 2017/18 (Season 2)

1.5.2.1 Test Pile Project

A test pile project was implemented before major construction began. The purpose of the test pile project was to confirm pile load-bearing capacity. The test pile project consisted of driving two temporary 30-inch-diameter hollow steel piles, first with a vibratory hammer, then with an impact hammer to collect pile capacity data. The piles were driven in the upland and nearshore, in line with the location of the proposed permanent upland trestle foundation piles. The piles were removed with a vibratory hammer. During the test, acoustic monitoring was implemented to gather in-water noise data on flanking sound. Monitoring was implemented to protect species of concern and record permitted take.

1.5.2.2 Trestle and Terminal Building Piles

The trestle and portion of the terminal building will be supported by (25) 30-inch steel piles below mean higher high water (MHHW). The 30-inch trestle piles were installed with a vibratory hammer. Since these are load-bearing piles, they were proofed with an impact hammer.

1.5.2.3 In-water Ground Stabilization

The in-water slope waterward of the terminal building was stabilized with 134-steel H-piles in a grid pattern over a 4,500 square foot area. The H-piles were installed with a vibratory hammer fixed with a leader from a barge-mounted derrick. In its final configuration, the top of the pile was placed below the mud line. There was very little benthic disturbance because each H-pile occupies less than one square foot of substrate and was pushed below the mud line.

1.5.2.4 Stormwater Outfall

The proposed upland terminal design discharges 7.2 acres of impervious and 2.9 acres of pervious surface to two outfalls. The current design uses an existing outfall along Park Avenue and includes installation of a new outfall to the east of the Terminal Building. New outfall installation was to require temporary construction of a coffer dam consisting of 90 sheet piles, followed by dewatering and excavation on the beach to install the outfall. However a design change resulted in the use of another shoring technique to install the outfalls, which did not require the use of sheet pile in the water. Therefore, installation and removal of the 90 sheet piles was not needed.

1.5.3 In-water Project Elements Completed in 2018/19 (Season 3)

1.5.3.1 Overhead Loading Structure and Vehicle Transfer Span

The overhead loading structure design includes three 30-inch steel piles and one 120-inch drilled shaft. The vehicle transfer span will be supported by two 78-inch drilled shafts. Construction for the drilled shafts will require the contractor place temporary piles to access the shaft overwater.

The drilled shafts were installed by first vibrating either the casings into the soil. The casing, which is a large-diameter steel pile that matches the size of the drilled shaft, extends about 25 to 40 feet above the MLLW surface elevation. The casing extends into the soil a minimum of 85 feet below the existing mudline, but the bottom of the drilled shaft extends about 35 feet below the bottom of the casing.

Once the casing was placed, an auger drilled out soil on the inside of the casing and the soil was placed on a barge. A slurry of bentonite was used to prevent the hole from collapsing as the auger drills below the casing. The removed soil was disposed of at an approved location, likely the approved in-water disposal site.

Once the shaft was been fully drilled, it was filled with concrete, which displaced the slurry inside the hole. The slurry was suctioned off the top of the casing, ensuring that it did not enter aquatic habitat. The total volume of concrete fill in the two vehicle transfer span shafts is approximately 250 cubic yards, and the volume for the overhead loading shaft is approximately 300 cubic yards.

Temporary platforms consisting of up to (69) 24-inch temporary piles were installed. The temporary piles were vibrated into place, then proofed for up to two to five feet to support construction equipment.

1.5.3.2 Public Fishing Pier

The public fishing pier is supported by (26) 24-inch steel piles. The timber and composite floats located at the existing fishing pier will be rebuilt and relocated to the new fishing pier. An additional 80-foot by 5-foot gangway and an additional 8-foot by 15-foot float will be added at the waterward end of the gangway to meet ADA requirements. The additional float will be located above the location where the mud line is at approximately -32 feet MLLW.

1.5.4 In-water Project Elements to be Completed in 2020/21 (Season 4)

1.5.4.1 Temporary Pile Removal

Sixty-nine temporary 24" steel piles installed to support work platforms will be removed with a vibratory hammer.

1.5.4.2 Floating Dolphin Piling

The floating dolphin will be moved from the current terminal to the new terminal. A combination of anchors (4) and piles (4) will be used to secure the dolphin anchor chains to the sea floor. Four 30" steel piles will be installed with a vibratory hammer.

1.5.4.3 Existing Terminal Removal

The existing terminal will be removed once the new terminal is complete. The existing terminal comprises 8,120 ft² of overwater cover and contains approximately 290 12-inch diameter creosote-treated piles. Demolition of the terminal will remove approximately 406 tons of creosote-treated timber from the aquatic environment. Demolition will take approximately two weeks and will occur from land and from a barge containing the necessary equipment.

As with the Tank Farm pier, piles may be removed with a vibratory hammer, a clamshell, or pulled directly (WSF BAR 2.1.1.1, p. 11). BMPs will be employed during pier and terminal removal to minimize turbidity and prevent the spread of any creosote-treated pier fragments (see Minimization Measures, below).

1.5.5 Durations

The number of days it will take to complete construction of the new terminal facility depends on the difficulty in penetrating the substrate during pile installation, or freeing piles during removal. It is assumed that only one vibratory hammer will be in operation at a time. Durations are conservative, and the actual amount of time to install and remove piles will likely be less. Duration estimates of each of the pile driving/removal elements are summarized in Table 1-2.

1.5.6 Project Schedule

Construction of the new terminal began in 2017, and the terminal will be operational in 2020. The existing terminal will be removed in 2020/2021 after the new facility is in operation. Regardless of the construction start date, the project will adhere to in-water work windows and BMPs described in this document.

All in-water work will be conducted during the Washington Department of Fish and Wildlife (WDFW) authorized work times in saltwater areas. The project is located within Tidal Reference Area 7. According to Washington Administrative Code (WAC) 220-660-330 (2016), the in-water work window in this area is July 15 through February 15. In-water work associated with this project will occur between August 1 and February 15.

Method	Pile Size (inch)	Season 4 Planned	Minutes per Pile	Piles per day	Minutes per day	Days
Vibratory Removal	12 (timber)	290	15	10	150	29
Vibratory Removal	24	69	15	3	45	23
Vibratory Drive	30	4	30	2	60	2
Total						54

 Table 1-2
 Season 4 In-water Pile Durations

1.6 Project Activities

The proposed project has two activities involving noise production that may impact marine mammals: vibratory hammer driving and removal, and impact hammer driving.

1.6.1 Vibratory Hammer Driving and Removal

Vibratory hammers are commonly used in steel pile driving where sediments allow and involve the same vibratory hammer used in pile removal. The pile is placed into position using a choker and crane, and then vibrated between 1,200 and 2,400 vibrations per minute (Figure 1-3). The vibrations liquefy the sediment surrounding the pile allowing it to penetrate to the required seating depth, or to be removed. The type of vibratory hammer that will be used for the project will likely be an APE 400 King Kong (or equivalent) with a drive force of 361 tons.

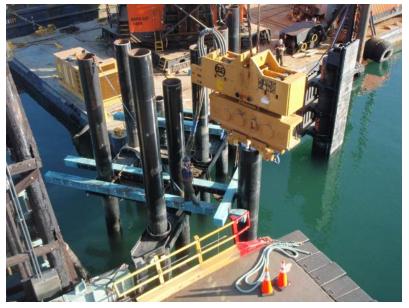


Figure 1-3 Vibratory Hammer Driving a Steel Pile

1.7 Sound Levels and Noise Analysis

NOAA technical guidance requires application of dual criteria (Level A/B thresholds) to in-water noise analysis. Level A (permanent and temporary threshold shift) and Level B (harassment) are analyzed to understand the potential effects of in-water project noise on marine mammals.

1.7.1 Reference Underwater Vibratory Sound Source Levels

Season 4 includes vibratory removal of 12-inch timber, 24-inch steel, and vibratory driving of 30-inch steel piles. Table 1-2 summarizes the estimated continuous noise levels generated by these piles.

Method	Pile Size (in)/Type	Estimated Noise Level
Removal	12 timber	153 dB _{RMS} at 10m ¹
Removal	24 steel	166 dB _{RMS} at 10m ²
Installation	30 steel	170 dB _{RMS} at 10m ³

 Table 1-3 Summary of underwater vibratory sound source levels

1.7.1.1 Vibratory Driving and Removal Injury and Zone of Exclusion/Shutdown Zones

The NMFS Optional Spreadsheet was used to determine the Injury and Zones of Exclusion/Shutdown Zones (Table 1-6). Appendix B provides the injury calculation, and reference Level B ZOI calculations (distances overridden by sound source verification as explained below).

1.7.1.2 Level B Harassment - Underwater Vibratory Sound Source Verification Measurements

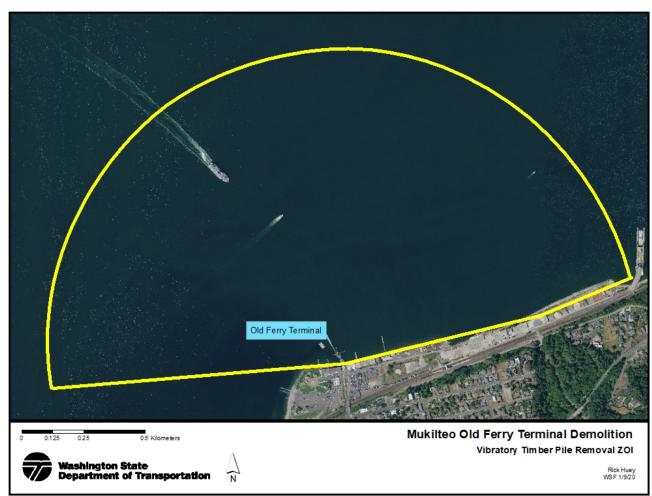
WSDOT has conducted sound source verification (SSV) measurements of the Level B harassment zones from vibratory removal of 12-inch diameter timber piles, and vibratory driving of 30-inch diameter steel piles at the Mukilteo Ferry Terminal.

For removal of 12-inch timber piles, the SSV results show that underwater noise cannot be detected at a distance of 1.13 km/0.7 miles (Laughlin 2015/Appendix B).

For driving of 30-inch steel piles, the SSV results show that underwater noise cannot be detected at a distance of 7.9 km/4.9 miles) (Laughlin 2017/Appendix C).

No SSV for 24-inch piles has been conducted at the Mukilteo project site. For 24-inch piles, the practical spreading model results in a Level B harassment distance of 10 km/6.2 miles for the source level of 166 dB_{RMS}. However, given that this source level is less than the 174 dB_{RMS} source level for the 30-inch piles, it is assumed that the SSV Level B harassment zone for 24-inch pile removal will be the same as for the driving of 30-inch piles (7.9 km/4.9 miles).

¹Source level for 12" timber piles based on direct measurements during the Port Townsend Project (Laughlin, 2011).


²Source level for removal of 24" piles based on direct measurements of 24" pile driving during the Manette Bridge project (Laughlin, 2010a). It is assumed that vibratory removal and driving of the same size pile would result in equal sound levels.

³Source level for 30-in pile based on direct measurements during the Mannette Bridge Project (Laughlin, 2010).

Request for an Incidental Harassment Authorization

Figure 1-4 shows the timber removal ZOI, and Figure 1-5 shows the steel vibratory ZOI. ArcMap map packages for the timber ZOI is provided in Appendix D, and the steel ZOI map package is provided in Appendix E.

5x11LandscapeBollomLegend.mx1/ Print Date

Figure 1-4 Vibratory Timber Pile Removal ZOI

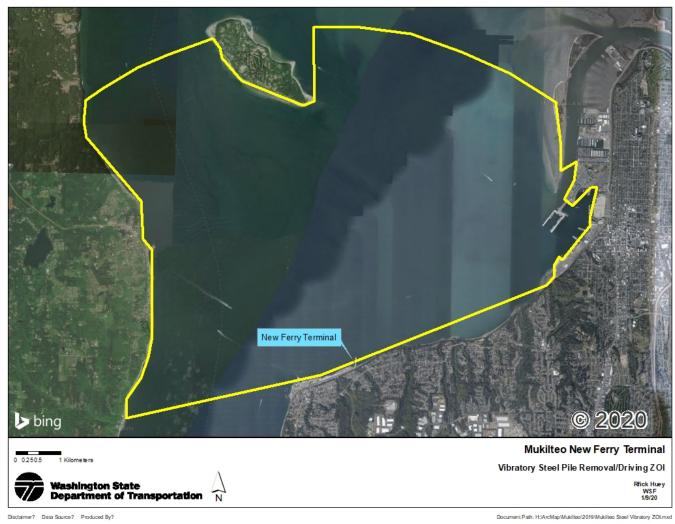


Figure 1-5 Vibratory Steel Pile Removal/Driving ZOI

1.7.2 Airborne Reference Sound Source Levels

While in-air sounds are not applicable to cetaceans, they are to pinnipeds, especially harbor seals when hauled out. Loud noises can cause hauled out seals to panic back into the water, leading to disturbance and possible injury to stampeded pups.

No unweighted in-air data is available for vibratory driving of most of the pile types and sizes associated with the Mukilteo project. Based on in-air measurements at the Vashon Ferry Terminal, vibratory driving of a 30-inch steel pile generated a maximum of 96.9 dB_{RMS} (unweighted) at 50 ft. (Laughlin 2010b). It is assumed that in-air noise generated during vibratory removal of 12- inch timber and 24-inch diameter steel piles will generate the same (or lower) source level (96.9 dB_{RMS}).

1.7.3 Attenuation to NMFS Thresholds

NMFS has established disturbance and injury noise thresholds for marine mammals (Table 1-5). Determining the area(s) exceeding each threshold level (the zone of influence [ZOI]/zone of exclusion [ZOE]) is necessary to establish shutdown zones to prevent injury, estimate the number of animals for the Level B acoustical harassment take request, and to establish monitoring areas. Attenuation to thresholds are provided in Table 1-6.

Marine Mammals	Airborne Noise Level at which Pinniped Haul-out Disturbance has been Documented	Vibratory Driving In-water Disturbance Threshold	Vibratory Driving In- water Injury Threshold	Impact Driving In- water Disturbance Threshold	Impact Driving In- water Injury Threshold
Low-frequency cetaceans	N/A	$120 dB_{RMS}$	199 dB SEL _{cum}	$160 dB_{RMS}$	183 dB _{RMS}
Mid-frequency cetaceans	N/A	120 dB _{RMS}	198 dB SEL _{cum}	$160 dB_{RMS}$	185 dB _{RMS}
High-frequency cetaceans	N/A	120 dB _{RMS}	173 dB SEL _{cum}	160 dB _{RMS}	155 dB _{RMS}
Phocid pinnipeds	90 dB _{RMS} (unweighted) for harbor seals	120 dB _{RMS}	201 dB SEL _{cum}	160 dB _{RMS}	185 dB _{RMS}
Otariid pinnipeds	100 dB _{RMS} (unweighted) for all other pinnipeds	$120 dB_{RMS}$	219 dB SEL _{cum}	160 dB _{RMS}	203 dB _{RMS}

Table 1-4 Injury and Disturbance Thresholds for Underwater and Airborne Noise

Table 1-5 Marine Mammal ZOE/Shutdown Distances								
		Level A ZOE (m)					Level B	
Method	Pile Size (in)	LF Cetacean	MF Cetacean	HF Cetacean	Phocid	Otariid	Distance (km)	Area (km ²)
Vibratory	12	3.7	0.3	5.4	2.2	0.2	1.2	2.3
Removal	24	12.1	1.1	18.0	7.4	0.5	8	66
Vibratory Driving	30	50.2	4.5	74.3	30.5	2.1	8	66
Shutdown Zones	All sizes	75	75	75	35	35	SRKW 1.2/8	

1.7.3.1 Vibratory Pile Driving or Removal Safety Zone/Zone of Exclusion

The purpose of the shutdown/safety zone/Zone of Exclusion (ZOE) is to ensure that noisegenerating activities avoid or limit Level A take.

WSF is proposing a shutdown ZOE of 75 m for cetaceans and 35 m for pinnipeds. No Level A take is requested. The Level B zones of 1.2 and 8 km will be shutdown zones for Southern Resident Killer Whale.

1.7.3.2 Vibratory Pile Removal/Driving Airborne Noise

NMFS has established an in-air noise disturbance threshold of 90 dB_{RMS} (unweighted) for harbor seals, and 100 dB_{RMS} (unweighted) for all other pinnipeds (sea lions).

The project includes vibratory removal of 12-inch timber piles and 24-inch diameter steel piles and vibratory driving of 30-inch diameter steel piles.

In-air thresholds will be reached at the following distances:

 Noise generated during vibratory removal of 12-inch timber and 24-inch steel piles and driving of 30-inch steel piles (96.9 dB at 50 feet) will reach the harbor seal threshold at approximately 34 m/111 ft., and is below the other pinnipeds threshold.

The nearest documented harbor seal haul out site to the Mukilteo Ferry Terminal is approximately 4 miles northeast on log rafts present in the East Waterway of Port Gardener Harbor (Figure 3-2). The closest documented California sea lion haul out sites to the Mukilteo Ferry Terminal are 3.2 miles northeast on the Everett Harbor buoys (Figure 3-2). The number of California sea lions using the buoys is less than 20 (Jeffries, et al. 2000).

This page intentionally left blank.

2.0 Dates, Duration, and Region of Activity

The date(s) and duration of such activity and the specific geographical region where it will occur.

2.1 Dates

Due to National Marine Fisheries Service (NMFS) and the U.S. Fish and Wildlife Service (USFWS) in-water work timing restrictions to protect ESA-listed salmonids, planned WSF inwater construction is limited each year to July 15 through February 15. For this project, in-water construction is planned to take place between August 1, 2018 and February 15, 2019.

2.2 Duration

Durations are provided in Table 2-1.

Method	Pile Size (inch)	Season 4 Planned	Minutes per Pile	Piles per day	Minutes per day	Days
Vibratory Removal	12 (timber)	290	15	10	150	29
Vibratory Removal	24	69	15	3	45	23
Vibratory Drive	30	4	30	2	60	2
Total						54

Table 2-1.Durations

2.3 Region of Activity

The proposed activities will occur at the Mukilteo Ferry Terminal located in the City of Mukilteo, Washington (see Figures 1-1 and 1-2).

3.0 Species and Numbers of Marine Mammals in Area

This section is a combination of items 3 and 4 from NOAA's list of information required for an incidental take authorization. It provides:

The species and numbers of marine mammals likely to be found within the activity area. A description of the status, distribution, and seasonal distribution (when applicable) of the affected species or stocks of marine mammals likely to be affected by such activities.

It also describes the ESA and MMPA status for each species. Possible ESA status designations include:

- Threatened: "any species which is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range."
- Endangered: "any species which is in danger of extinction throughout all or a significant portion of its range."
- Proposed: *candidate species* that were found to warrant listing as either threatened or endangered and are officially proposed as such in a *Federal Register* notice.
- Delisted: No longer listed under the ESA.
- Unlisted: Not currently listed under the ESA.

Possible MMPA status designations include:

- Strategic: a marine mammal stock for which the level of direct human-caused mortality exceeds the potential biological removal level; which, based on the best available scientific information, is declining and is likely to be listed as a threatened species under the ESA within the foreseeable future; or which is listed as a threatened or endangered species under the ESA, or is designated as depleted under the MMPA.
- Depleted: the Secretary, after consultation with the Marine Mammal Commission and the Committee of Scientific Advisors on Marine Mammals established under MMPA title II, determines that a species or population stock is below its optimum sustainable population; a State, to which authority for the conservation and management of a species or population stock is transferred under section 109, determines that such species or stock is below its optimum sustainable population; or a species or population stock is listed as a threatened or endangered species under the ESA.
- Non-depleted: a species or population stock is at or above its optimum sustainable population (NMFS 2013a).

3.1 Species Present

Eleven species of marine mammals may be found in the Mukilteo Ferry Terminal area (Table 3-1).

Species	ESA Status	MMPA Status	Timing of Occurrence	Frequency of Occurrence
Harbor seal	Not listed	Non-depleted	Year-round	Common
Northern elephant seal	Not listed	Non-depleted	Year-round	Rare
California sea lion	Not listed	Non-depleted	August-April	Common
Steller sea lion	Delisted	Non-strategic	August-April	Rare
Killer whale (Southern Resident)	Endangered	Depleted	September - May	Infrequent
Killer whale (Transient)	Not listed	Depleted	Year-round	Infrequent
Gray whale	Delisted	Unclassified	January-May	Occasional
Humpback whale (Central America DPS)	Endangered	Depleted	Year-round	Rare
Humpback whale (Mexico DPS)	Threatened	Depleted	Year-round	Common
Humpback whale (Hawaii DPS)	Not listed	Depleted	Year-round	Common
Minke whale	Not listed	Non-depleted	September- January	Occasional
Harbor porpoise	Not listed	Non-depleted	May-June peak	Occasional
Dall's porpoise	Not listed	Non-depleted	October-February	Occasional
Common Bottlenose dolphin	Not listed	Non-depleted	Year-round	Rare

 Table 3-1 Marine Mammal Species Potentially Present in Region of Activity

3.2 Pinnipeds

There are four species of pinnipeds that present in the Mukilteo Ferry Terminal area: harbor seal (*Phoca vitulina richardsi*), Northern elephant seal (*Mirounga angustirostris*), California sea lion (*Zalophus californianus*) and Steller sea lion (*Eumetopias jubatus*).

3.2.1 Harbor Seal

There are three stocks in Washington's inland waters, the Hood Canal, Northern Inland Waters, and Southern Puget Sound stocks. Seals belonging to the Northern Inland Waters Stock are present at the project site. Pupping seasons vary by geographic region. For the northern Puget Sound region, pups are born from late June through August (WDFW 2012). After October 1, all pups in the inland waters of Washington are weaned. Of the pinniped species that commonly

Request for an Incidental Harassment Authorization

occur within the region of activity, harbor seals are the most common and the only pinniped that breeds and remains in the inland marine waters of Washington year-round (Calambokidis and Baird 1994).

3.2.1.1 Numbers

In 1999, Jeffries et al. (2003) recorded a mean count of 9,550 harbor seals in Washington's inland marine waters, and estimated the total population to be approximately 14,612 animals (including the Strait of Juan de Fuca). According to the 2014 Stock Assessment Report, the most recent estimate for the Washington Northern Inland Waters Stock is 11,036 (NMFS 2014). No minimum population estimate is available. However, there are an estimated 32,000 harbor seals in Washington today, and their population appears to have stabilized (Jeffries 2013), so the estimate of 11,036 may be low.

3.2.1.2 Status

The Washington Inland Waters stock of harbor seals is "non-depleted" under the MMPA and "unlisted" under the ESA.

3.2.1.3 Distribution

Harbor seals are the most numerous marine mammal species in Puget Sound. Harbor seals are non-migratory; their local movements are associated with such factors as tides, weather, season, food availability and reproduction (Scheffer and Slipp 1944; Fisher 1952; Bigg 1969, 1981). They are not known to make extensive pelagic migrations, although some long-distance movements of tagged animals in Alaska (108 miles) and along the U.S. west coast (up to 342 miles) have been recorded (Pitcher and McAllister 1981; Brown and Mate 1983; Herder 1983).

Harbor seals haul out on rocks, reefs and beaches, and feed in marine, estuarine and occasionally fresh waters. Harbor seals display strong fidelity for haul out sites (Pitcher and Calkins 1979; Pitcher and McAllister 1981). The nearest documented harbor seal haul out site to the Mukilteo Ferry Terminal is approximately 4 miles northeast on log rafts present in the East Waterway of Port Gardner Harbor (Figure 3-1). The level of use of this haul out during the fall and winter is unknown, but is expected to be much less as air temperatures become colder than water temperatures resulting in seals in general hauling out less (H. Huber pers. comm. 2010).

3.2.1.4 Navy Density Estimate

The Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of harbor seals in the Mukilteo area as a range between 1.22 to 2.21 animals per square kilometer.

3.2.2 Northern Elephant Seal

The California breeding stock of northern elephant seal (Mirounga angustirostris) may be present near the project site.

3.2.2.1 Numbers

The California stock of northern elephant seal minimum population size is estimated very conservatively as 81,368 (NMFS 2015a). In Puget Sound and the Strait of San Juan de Fuca, 10 to 15 northern elephant seal pups are born each year on Whidbey, Protection, and Smith Islands, Dungeness Spit and Race Rocks. The population in the Salish Sea appears to be rising (Orca Network 2015a). Using a multiplier of 4.4 (NMFS 2015a) with the maximum pup count of 15, the Salish Sea population could be as large as 66 individuals.

3.2.2.2 Status

The California breeding stock of northern elephant seal is not ESA listed, and not considered a "depleted" or "strategic" stock under the MMPA (NMFS 2015a).

3.2.2.3 Distribution

Northern elephant seals breed and give birth in California (U.S.) and Baja California (Mexico), primarily on offshore islands, from December to March. Males feed near the eastern Aleutian Islands and in the Gulf of Alaska, and females feed further south. Adults return to land between March and August to molt, with males returning later than females. Adults return to their feeding areas again between their spring/summer molting and their winter breeding seasons (NMFS 2015a). The closest documented northern elephant seal haul out is Protection Island (30 miles northwest of the ferry terminal).

Elephant seals also use area beaches as haul outs, such as a female elephant seal that has been coming to a south Whidbey beach to rest while molting each spring for several years, and recently gave birth to a pup. Male elephant seals have also been observed in Puget Sound, as far south as Vashon Island (Miller 2015 personal comm. 4/6/15).

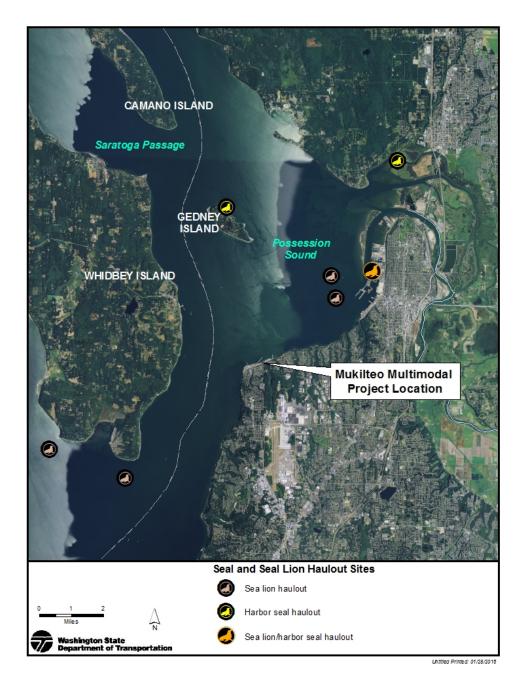
3.2.2.4 Project-specific Observations/Takes/Navy Density Estimate

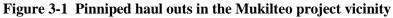
From August to November 2015, WSF conducted marine mammal monitoring during tank farm pier removal at the Mukilteo Multimodal Project. During 51 days of monitoring, no northern elephant seals were observed within the ZOI (WSDOT 2016).

From September 2017 to February 2018, WSF conducted marine mammal monitoring during Year Two of the Mukilteo Multimodal Project. During 51 days of monitoring, no northern elephant seals were observed within the ZOIs (WSDOT 2018).

No in-water work took place in the 2018/2019 work window (August-February).

From October 2019 to January 2020, WSF conducted marine mammal monitoring during Year Three of the Mukilteo Multimodal Project (which is still in construction). During 27 days of monitoring, 2 northern elephant seals were observed within the ZOIs, with a one-day high of 2 individuals on October 16, 2019 (WSDOT 2020).


Request for an Incidental Harassment Authorization



For the Mukilteo Project from August 2015 to January 2020, there have been 129 days of monitoring and 2 northern elephant seals observed, an average of 0.016 observed per day.

For ZOI-1 and ZOI-2, there have been 0 observed northern elephant seal takes.

The Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of northern elephant seals in the Mukilteo area as 0.00001 animals per square kilometer.

3.2.3 California Sea Lion

Washington California sea lions are part of the U.S. stock, which begins at the U.S./Mexico border and extends northward into Canada.

3.2.3.1 Numbers

The minimum population size of the U.S. stock was estimated at 296,750 in 2011. More recent pup counts made in 2011 totaled 61,943, the highest recorded to that date. Estimates of total population size based on these counts are currently being developed (NMFS 2015b). Some 3,000 to 5,000 animals are estimated to move into northwest waters (both Washington and British Columbia) during the fall (September) and remain until the late spring (May) when most return to breeding rookeries in California and Mexico (Jeffries et al. 2000; J. Calambokidis pers. comm. 2008). Peak counts of over 1,000 animals have been made in Puget Sound (Jeffries et al. 2000).

The nearest documented California sea lion haul out sites to the Mukilteo ferry terminal are 3.5 miles northeast on the Everett Harbor buoys (Figure 3-3). The number of California sea lions using the buoys is less than 20 (Jeffries, et al. 2000).

3.2.3.2 Status

California sea lions are not listed as endangered or threatened under the ESA or as depleted under the MMPA. They are not considered a strategic stock under the MMPA, because total human-caused mortality, although unknown, is likely to be well less than the PBR (9,200) (NMFS 2015b).

3.2.3.3 Distribution

California sea lions breed on islands off Baja Mexico and southern California with primarily males migrating north to feed in the northern waters (Everitt et al. 1980). Females remain in the waters near their breeding rookeries off California and Mexico. All age classes of males are seasonally present in Washington waters (Jeffries, et al. 2000).

California sea lions were unknown in Puget Sound until approximately 1979 (Steiger and Calambokidis 1986). Everitt et al. (1980) reported the initial occurrence of large numbers at Port Gardner, Everett (northern Puget Sound) in the spring of 1979. The number of California sea lions using the Everett haul out numbered around 1,000. This haul out remains the largest in the state for sea lions in general and for California sea lions specifically (P. Gearin pers. comm. 2008). Similar sightings and increases in numbers were documented throughout the region after the initial sighting in 1979 (Steiger and Calambokidis 1986), including urbanized areas such as Elliott Bay near Seattle and heavily used areas of central Puget Sound (P. Gearin et al. 1986). In Washington, California sea lions use haul out sites within all inland water regions (Jeffries, et al. 2000). The movement of California sea lions into Puget Sound could be an expansion in range of a growing population (Steiger and Calambokidis 1986).

California sea lions do not avoid areas with heavy or frequent human activity, but rather may approach certain areas to investigate. This species typically does not flush from a buoy or haul out if approached.

3.2.3.4 Navy Density Estimate

Between August and mid-June, the Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of California sea lions in the Mukilteo area ranging between 0.0676 and 0.1266 animals per square kilometer.

3.2.4 Steller Sea Lion

The Eastern U.S. stock of Steller sea lion may be present near the project site.

3.2.4.1 Numbers

The most recent minimum population estimate for the eastern U.S. stock of Steller sea lions was 41,638 individuals in 2015. The Washington (non-pup) estimate was 1,407 (NMFS 2016b). Within the last several years, a new rookery became established on the outer Washington coast with a confirmed count of 45 pups in 2013, and greater than 100 pups in 2015 (NMFS 2016b).

Steller sea lion numbers in Washington State decline during the summer months, which correspond to the breeding season at Oregon and British Columbia rookeries (approximately late May to early June) and peak during the fall and winter months (Jeffries et al. 2000). A few Steller sea lions can be observed year-round in Puget Sound although most of the breeding age animals return to rookeries in the spring and summer (P. Gearin pers. comm. 2008).

3.2.4.2 Status

The eastern stock of Steller sea lions is classified as "non-strategic" under the MMPA and was "delisted" under the ESA on November 4, 2013 (78 FR 66140).

3.2.4.3 Distribution

Adult Steller sea lions congregate at rookeries in California, Oregon, Washington, and British Columbia for pupping and breeding from late May to early June (Gisiner 1985; NMFS 2016b). Rookeries are usually located on beaches of relatively remote islands, often in areas exposed to wind and waves, where access by humans and other mammalian predators is difficult (WDFW 1993).

For Washington inland waters, Steller sea lion abundances vary seasonally with a minimum estimate of 1,000 to 2,000 individuals present or passing through the Strait of Juan de Fuca in fall and winter months (S. Jeffries pers. comm. 2008). The number of haul out sites has increased in recent years.

3.2.4.4 Navy Density Estimate

From October through May, the Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of Steller sea lions in the Mukilteo area ranging between 0.0251 and 0.0368 animals per square kilometer.

3.3 Cetaceans

Seven cetacean species may be present in the Mukilteo terminal area; killer whale (Southern Resident and Transient), gray whale, humpback whale, Minke whale, harbor porpoise, Dall's porpoise and common bottlenose dolphin.

3.3.1 Killer Whale

The Eastern North Pacific Southern Resident (SRKW) and West Coast Transient (Transient) stocks of killer whale may be found near the project site. Killer whales are mid-frequency hearing range cetaceans (Southall et al. 2007).

3.3.1.1 Numbers

Southern Resident Stock

The Southern Residents live in three family groups known as the J, K and L pods, and currently consists of 73 individuals (CWR 2019).

West Coast Transient Stock

Transient killer whales generally occur in smaller (less than 10 individuals), less structured pods (NMFS 2013b). According to the Center for Whale Research (CWR 2015), they tend to travel in small groups of one to five individuals, staying close to shorelines, often near seal rookeries when pups are being weaned. The West Coast Transient stock, which includes individuals from California to southeastern Alaska, has a minimum population estimate of 243 (NMFS 2013b).

3.3.1.2 Status

Southern Resident Stock

The SRKW stock was declared "depleted/strategic" under the MMPA in May 2003 (68 FR 31980). On November 18, 2005, the SR stock was listed as "endangered" under the ESA (70 FR 69903). On November 29, 2006, NMFS published a final rule designating critical habitat for the SR killer whale DPS. Both Puget Sound and the San Juan Islands are designated as core areas of critical habitat under the ESA, excluding areas less than 20 feet deep relative to extreme high water (71 FR 69054). A final recovery plan for Southern Residents was published in January of 2008 (NMFS 2008). On February 23, 2015, NMFS announced a 12-month finding on a petition to revise the Critical Habitat Designation for the Southern Resident killer whale distinct population segment is warranted (NMFS 2015c). On September 9, 2019, NMFS proposed a revision of critical habitat (50 FR 226). The revision is currently in process (not finalized).

West Coast Transient Stock

The West Coast Transient stock is "non-depleted" under the MMPA, and "unlisted" under the ESA (NMFS 2013b).

Washington State Status

In Washington State, all killer whales (*Orcinus orca*) that may be present in Washington waters (Southern Resident, West Coast Transient, and Offshore) were listed as a state candidate species in 2000. In April 2004, the State upgraded their status to a "state endangered species" (WDFW 2004).

3.3.1.3 Distribution

The SRKW and West Coast Transient stocks are both found within Washington inland waters. Individuals of both stocks have long-ranging movements and regularly leave the inland waters (Calambokidis and Baird 1994).

Southern Resident Stock Distribution

Southern Residents are documented in coastal waters ranging from central California to the Queen Charlotte Islands, British Columbia (NMFS 2008). They occur in all inland marine waters. SR killer whales generally spend more time in deeper water and only occasionally enter water less than 15 feet deep (Baird 2000). Distribution is strongly associated with areas of greatest salmon abundance, with heaviest foraging activity occurring over deep open water and in areas characterized by high-relief underwater topography, such as subsurface canyons, seamounts, ridges, and steep slopes (Wiles 2004).

Records from 1976 through 2013 document Southern Residents in the inland waters of Washington during the months of March through June and October through December, with the primary area of occurrence in inland waters north of Admiralty Inlet, located in north Puget Sound (Orca Network 2015b).

Spring/Summer Distribution. Beginning in May or June and through the summer months, all three pods (J, K and L) of Southern Residents are most often located in the protected inshore waters of Haro Strait (west of San Juan Island), in the Strait of Juan de Fuca, and Georgia Strait near the Fraser River.

Fall/Winter Distribution. In fall, all three pods occur in areas where migrating salmon are concentrated such as the mouth of the Fraser River. They may also enter areas in Puget Sound where migrating chum and Chinook salmon are concentrated (Osborne 1999). In the winter months, the K and L pods spend progressively less time in inland marine waters and depart for coastal waters in January or February. The J pod is most likely to appear year-round near the San Juan Islands, and in the fall/winter, in the lower Puget Sound and in Georgia Strait at the mouth of the Fraser River.

West Coast Transient Stock Distribution

The West Coast Transient stock occurs in California, Oregon, Washington, British Columbia, and southeastern Alaskan waters. Within the inland waters, they may frequent areas near seal rookeries when pups are weaned (Baird and Dill 1995).

West Coast Transients are documented intermittently year-round in Washington inland waters. Transient sightings have become more common since the mid-2000's. Unlike the SRKW pods, Transients may be present in the area for hours as they hunt pinnipeds.

3.3.1.4 Southern Resident Project-specific Data/Navy Density Estimate

From August to November 2015, WSF conducted marine mammal monitoring during tank farm pier removal at the Mukilteo Multimodal Project. During 51 days of monitoring, 0 SRKW were observed within the ZOI (WSDOT 2016).

From September 2017 to February 2018, WSF conducted marine mammal monitoring during Year Two of the Mukilteo Multimodal Project. During 51 days of monitoring, 0 SRKW were observed within the ZOIs (WSDOT 2018).

No in-water work took place in the 2018/2019 work window (August-February).

From October 2019 to January 2020, WSF conducted marine mammal monitoring during Year Three of the Mukilteo Multimodal Project (which is still in construction). During 32 days of monitoring, 34 SRKW were observed within the ZOIs, with a one-day high of 14 individuals on October 15, 2019 (WSDOT 2020).

For the Mukilteo Project from August 2015 to January 2020, there have been 134 days of monitoring and 34 SRKW observed, an average of 0.26 observed per day.

For ZOI-1 and ZOI-2, there have been 0 observed SRKW takes.

From October through May, the Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of SRKW in the Mukilteo area ranging between 0.000506 and 0.002091 animals per square kilometer.

3.3.1.5 Transient Project-specific Data/Navy Density Estimate

From August to November 2015, WSF conducted marine mammal monitoring during tank farm pier removal at the Mukilteo Multimodal Project. During 51 days of monitoring, 12 transient killer whales were observed: eight on August 13, and four on August 24, 2015 (WSDOT 2016).

From September 2017 to February 2018, WSF conducted marine mammal monitoring during Year Two of the Mukilteo Multimodal Project. During 51 days of monitoring, 16 transient killer whales were observed within the ZOIs, with a one-day high of 4 individuals on October 9, 2017 (WSDOT 2018).

No in-water work took place in the 2018/2019 work window (August-February).

From October 2019 to January 2020, WSF conducted marine mammal monitoring during Year Three of the Mukilteo Multimodal Project (which is still in construction). During 32 days of monitoring, 15 transient killer whales were observed within the ZOIs, with a one-day high of 8 individuals on October 16, 2019 (WSDOT 2020).

For the Mukilteo Project from August 2015 to January 2020, there have been 134 days of monitoring and 36 transient killer whales observed, an average of 0.28 observed per day.

For ZOI-1 and ZOI-2, there have been 0 observed transient killer whale takes.

From October through May, the Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of transient killer whale in the Mukilteo area ranging between 0.001582 and 0.002373 animals per square kilometer.

3.3.2 Gray Whale

The Eastern North Pacific gray whale may be found near the project site. Gray whales are low-frequency range cetaceans (Southall et al. 2007).

3.3.2.1 Numbers

The most recent population estimate for the Eastern North Pacific stock is 20,990 individuals (NMFS 2015d). Animals that spend the summer and autumn feeding in coastal waters of the Pacific coast of North America from California to southeast Alaska have been designated as the "Pacific Coast Feeding Group" or PCFG (IWC 2012). This definition was further refined for purposes of abundance estimation, limiting the geographic range to the area from northern California to northern British Columbia, limiting the temporal range to the period from June 1 to November 30, and counting only those whales seen in more than one year within this geographic and temporal range (IWC 2012). The 2012 abundance estimate for the defined range of the PCFG is 209 (Calambokidis *et al.* 2014).

3.3.2.2 Status

The Eastern North Pacific stock of gray whales is "non-depleted" under the MMPA, and was "delisted" under the ESA in 1994 after a 5-year review by NOAA Fisheries.

3.3.2.3 Distribution

Gray whales had a considerably higher number of sighting days within the ZOI quadrants than all other species. This is likely driven by the 'resident' population of gray whales that returns to the Possession Sound and Port Susan area each year, primarily in spring and summer (Calambokidis et al., 2014).

The number of sighting days drops considerably when limited to the months of interest (August through February), but gray whales are still the most common large cetacean in the project area followed by transient orcas and humpbacks. From 2011-2015, sightings days for gray whale in the project ZOIs were 8 in the month of January and 24 in the month of February (TWM 2016). Sightings days likely include re-sightings of the same individual(s).

3.3.2.4 Navy Density Estimate

The Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of gray whales in the Mukilteo area as a range of 0.000015 to 0.0051 animals per square kilometer.

3.3.3 Humpback Whale

The California-Oregon-Washington (CA-OR-WA) stock of humpback whale may be found near the project site. Humpback whales are low-frequency hearing range cetaceans (Southall et al. 2007).

3.3.3.1 Numbers

The stock assessment report population estimate is 2,900 individuals. The minimum population estimate is 2,784 (NMFS 2019).

3.3.3.2 Status

The California-Oregon-Washington stock of humpback whales is "depleted/strategic" under the MMPA, and "endangered" under the Endangered Species Conservation Act of 1969. This protection was transferred to the ESA in 1973. A recovery plan was adopted in 1991(NMFS 1991).

In 2016, NMFS revised the ESA listing for the humpback whale to identify 14 Distinct Population Segments (DPS), and listed one as threatened, four as endangered, and nine others as not warranted for listing. The unlisted Hawaii DPS, the threatened Mexico DPS and the endangered Central American DPS may be present in Puget Sound.

3.3.3.3 Distribution

Historically, humpback whales were common in inland waters of Puget Sound and the San Juan Islands (Calambokidis et al. 2004). In the early 1900s, there was a productive commercial hunt for humpbacks in Georgia Strait that was probably responsible for their long disappearance from local waters (Osborne et al. 1988). Commercial hunts ended in the 1960's. Since the mid-1990s, sightings in Puget Sound have increased. Humpback whales are seen in Puget Sound, but more frequent sightings occur in the Strait of Juan de Fuca and near the San Juan Islands. Most sightings are in spring and summer.

Along the U.S. west coast, one stock is currently recognized, which includes animals that appear to be part of two separate feeding groups, a California and Oregon feeding group and a northern Washington and southern British Columbia feeding group. Very few photographic matches between these feeding groups have been documented. Humpbacks from both groups have been photographically matched to breeding areas off Central America, mainland Mexico, and Baja California, but whales from the northern Washington and southern British Columbia feeding group also winter near the Hawaiian Islands and the Revillagigedo Islands off Mexico. Seven 'biologically important areas' for humpback whale feeding are identified off the U.S. west coast, including five in California, one in Oregon, and one in Washington (NMFS 2019).

Washington State Department of Transportation

3.3.3.4 Project-specific Data/Navy Density Estimate

From August to November 2015, WSF conducted marine mammal monitoring during tank farm pier removal at the Mukilteo Multimodal Project. During 51 days of monitoring, one humpback whale was observed within the ZOI on November 4, 2015 (WSDOT 2016).

From September 2017 to February 2018, WSF conducted marine mammal monitoring during Year Two of the Mukilteo Multimodal Project. During 51 days of monitoring, 0 humpback whales were observed within the ZOIs (WSDOT 2018).

No in-water work took place in the 2018/2019 work window (August-February).

From October 2019 to January 2020, WSF conducted marine mammal monitoring during Year Three of the Mukilteo Multimodal Project (which is still in construction). During 32 days of monitoring, one humpback whale was observed within the ZOIs (WSDOT 2020).

For the Mukilteo Project from August 2015 to January 2020, there have been 134 days of monitoring and 2 humpback whales observed, an average of 0.015 observed per day.

For ZOI-1 and ZOI-2, there have been 0 observed humpback whale takes.

The Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of humpback whales in the Mukilteo area as a range between 0 and 0.00014 animals per square kilometer.

3.3.4 Minke Whale

The California-Oregon-Washington (CA-OR-WA) stock of minke whale may be found near the project site. Minke whales are low-frequency hearing range cetaceans (Southall et. al. 2007).

The CA-WA-OR stock is considered a resident stock (NMFS 2016d), and includes minke whales within the inland Washington waters of Puget Sound and the San Juan Islands (Dorsey et al. 1990).

3.3.4.1 Numbers

Information on Minke whale population and abundance is limited due to difficulty in detection. Conducting surveys for the Minke whale is difficult because of their low profiles, indistinct blows, and tendency to occur as single individuals (Green et al. 1992). The minimum population estimate for this stock (369 whales) is based on 2008 and 2014 summer/fall ship surveys in California, Oregon, and Washington waters (Barlow 2016).

Over a 10-year period, 30 individuals were photo-identified in the U.S./Canada trans-boundary area around the San Juan Islands and demonstrated high site fidelity (Dorsey et al. 1990; Calambokidis and Baird 1994). In a single year, up to 19 individuals were photo-identified from around the San Juan Islands (Dorsey et al. 1990).

From 2011-2015, sightings days for Minke whale in the project ZOIs were 1 in the month of February (TWM 2016).

3.3.4.2 Status

Minke whales are not listed under the ESA and are classified as non-depleted under the MMPA.

3.3.4.3 Distribution

Minke whales are reported in Washington inland waters year-round, although few are reported in the winter (Calambokidis and Baird 1994). Minke whales are relatively common in the San Juan Islands and Strait of Juan de Fuca (especially around several of the banks in both the central and eastern Strait), but are relatively rare in Puget Sound.

3.3.4.4 Navy Density Estimate

The Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of Minke whales in the Mukilteo area as a range between 0.000801 and 0.002 animals per square kilometer.

3.3.5 Harbor Porpoise

The Washington Inland Waters Stock of harbor porpoise may be found near the project site. The Washington Inland Waters Stock occurs in waters east of Cape Flattery (Strait of Juan de Fuca, San Juan Island Region, and Puget Sound). Harbor porpoise are high-frequency hearing range cetaceans (Southall et. al. 2007).

3.3.5.1 Numbers

The Washington Inland Waters Stock mean abundance estimate based on 2002 and 2003 aerial surveys conducted in the Strait of Juan de Fuca, San Juan Islands, Gulf Islands, and Strait of Georgia is 10,682 harbor porpoises (NMFS 2017a). No minimum population estimate is available.

No harbor porpoise were observed within Puget Sound proper during comprehensive harbor porpoise surveys conducted in the 1990s (Osmek et al. 1994). Declines were attributed to gill-net fishing, increased vessel activity, contaminants, and competition with Dall's porpoise.

However, populations have rebounded with increased sightings in central Puget Sound (Carretta et al. 2007) and southern Puget Sound (WDFW 2008). Recent systematic boat surveys of the main basin indicate that at least several hundred and possibly as many as low thousands of harbor porpoise are now present. While the reasons for this recolonization are unclear, it is possible that changing conditions outside of Puget Sound, as evidenced by a tripling of the population in the adjacent waters of the Strait of Juan de Fuca and San Juan Islands since the early 1990s, and the recent higher number of harbor porpoise mortalities in coastal waters of Oregon and Washington, may have played a role in encouraging harbor porpoise to explore and shift into areas like Puget Sound (Evenson, et al. 2016).

3.3.5.2 Status

The Washington Inland Waters Stock of harbor porpoise is "non-depleted" under MMPA, and "unlisted" under the ESA.

3.3.5.3 Distribution

Harbor porpoises are common in the Strait of Juan de Fuca and south into Admiralty Inlet, especially during the winter, and are becoming more common south of Admiralty Inlet.

Little information exists on harbor porpoise movements and stock structure near the Mukilteo area, although it is suspected that in some areas harbor porpoises migrate (based on seasonal shifts in distribution). For instance, Hall (2004) found harbor porpoises off Canada's southern Vancouver Island to peak during late summer, while the WDFW Puget Sound Ambient Monitoring Program (PSAMP) data show peaks in Washington waters to occur during the winter.

Hall (2004) found that the frequency of sighting of harbor porpoises decreased with increasing depth beyond 150 m with the highest numbers observed at water depths ranging from 61 to 100 m. Although harbor porpoises have been spotted in deep water, they tend to remain in shallower shelf waters (<150 m) where they are most often observed in small groups of one to eight animals (Baird 2003).

3.3.5.4 Navy and WDFW Density Estimates

The Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of harbor porpoises in the Mukilteo area as a range between 0.061701 and 0.156 animals per square kilometer.

According to the WDFW study (Evenson, et al. (2016), the maximum harbor porpoise density in the Whidbey Basin (which includes the project ZOIs) is 0.79 animals per square kilometer.

3.3.6 Dall's Porpoise

The California, Oregon, and Washington Stock of Dall's porpoise may be found near the project site. Dall's porpoise are high-frequency hearing range cetaceans (Southall et. al. 2007).

3.3.6.1 Numbers

The most recent estimate of Dall's porpoise stock abundance is 42,000, based on 2005 and 2008 summer/autumn vessel-based line transect surveys of California, Oregon, and Washington waters (NMFS 2017b). Within the inland waters of Washington and British Columbia, this species is most abundant in the Strait of Juan de Fuca east to the San Juan Islands. The most recent Washington's inland waters estimate is 900 animals (Calambokidis et al. 1997), though sightings have become rarer since then. Prior to the 1940s, Dall's porpoises were not reported in Puget Sound.

3.3.6.2 Status

The California, Oregon, and Washington Stock of Dall's porpoise is "non-depleted" under the MMPA, and "unlisted" under the ESA.

3.3.6.3 Distribution

Dall's porpoises are migratory and appear to have predictable seasonal movements driven by changes in oceanographic conditions (Green et al. 1992, 1993), and are most abundant in Puget

Sound during the winter (Nysewander et al. 2005; WDFW 2008). Despite their migrations, Dall's porpoises occur in all areas of inland Washington at all times of year, but with different distributions throughout Puget Sound from winter to summer. The WDFW PSAMP data show peaks in Washington waters to occur during the winter. The average winter group size is three animals (WDFW 2008).

3.3.6.4 Navy Density Estimate

The Navy Marine Species Density Database (U.S. Navy 2019) estimates the density of Dall's porpoises in the Mukilteo area as a range between 0.018858 and 0.047976 animals per square kilometer.

3.3.7 Common Bottlenose Dolphin

The California-Oregon-Washington Offshore stock of common bottlenose dolphin may be found near the project site. Common bottlenose dolphins are mid-frequency hearing range cetaceans (Southall et. al. 2007).

3.3.7.1 Numbers

The most recent shipboard surveys conducted within 300 nautical miles of the coasts of California, Oregon, and Washington were in 2008 and 2014. The minimum population estimate for bottlenose dolphin is 1,255 (NMFS 2017c).

3.3.7.2 Status

The California, Oregon, and Washington Offshore Stock of common bottlenose dolphin is "non-depleted" under the MMPA, and "unlisted" under the ESA.

3.3.7.3 Distribution

On surveys conducted off California, offshore bottlenose dolphins have been found at distances greater than a few kilometers from the mainland and throughout the Southern California Bight. They have also been documented in offshore waters as far north as about 41° N, and they may range into Oregon and Washington waters during warm-water periods (NMFS 2017c).

From 2011-2015, sightings days for bottlenose dolphins in the project ZOIs were 4 in the month of January (TWM 2016).

3.3.7.4 Project Specific Data/Navy Density Estimate/General Sightings

From August to November 2015, WSF conducted marine mammal monitoring during tank farm pier removal at the Mukilteo Multimodal Project. During 51 days of monitoring, 0 common bottlenose dolphins were observed within the ZOI (WSDOT 2016).

From September 2017 to February 2018, WSF conducted marine mammal monitoring during Year Two of the Mukilteo Multimodal Project. During 51 days of monitoring, 0 common bottlenose dolphins were observed within the ZOIs (WSDOT 2018).

No in-water work took place in the 2018/2019 work window (August-February).

Request for an Incidental Harassment Authorization

From October 2019 to January 2020, WSF conducted marine mammal monitoring during Year Three of the Mukilteo Multimodal Project (which is still in construction). During 32 days of monitoring, 0 common bottlenose were observed within the ZOIs (WSDOT 2020).

For the Mukilteo Project from August 2015 to January 2020, there have been 134 days of monitoring and 0 common bottlenose dolphins observed.

For ZOI-1 and ZOI-2, there have been 0 observed common bottlenose dolphins takes.

The Navy Marine Species Density Database (U.S. Navy 2019) concludes that common bottlenose dolphins are not expected to be present in the Mukilteo area.

Between September 2017 and March 2018, a group of up to 5-6+ Bottlenose dolphins was sighted in South Puget Sound (EPS 2018). It is assumed that this group is still present in the area.

4.0 Status and Distribution of Affected Species or Stocks

A description of the status, distribution, and seasonal distribution (when applicable) of the affected species or stocks of marine mammals likely to be affected by such activities.

This section has been combined with Section 3.0.

5.0 Type of Incidental take Authorization Requested

The type of incidental taking authorization that is being requested (i.e., takes by harassment only, takes by harassment, injury and/or death), and the method of incidental taking.

The MMPA defines "harassment" as:

any act of pursuit, torment, or annoyance which (i) has the potential to injure a marine mammal or marine mammal stock in the wild [Level A harassment]; or (ii) has the potential to disturb a marine mammal or marine mammal stock in the wild by causing disruption of behavioral patterns, including, but not limited to, migration, breathing, nursing, breeding, feeding, or sheltering [Level B harassment] (50 C.F.R, Part 216, Subpart A, Section 216.3-Definitions).

Level A is the more severe form of harassment because it may result in injury or death, whereas Level B only results in disturbance *without* the potential for injury. (B. Norberg pers. comm. 2007a).

5.1 Incidental take Authorization Request

Under Section 101 (a)(5)(D) of the MMPA, WSF requests an IHA from September 1, 2018 through February 15, 2019 for Level B incidental take (behavioral harassment) of the marine mammals described in this application during the terminal construction project at the Mukilteo Ferry Terminal.

The requested authorization is for incidental harassment of any 13 species of marine mammal that might enter the 160 dB ZOI during impact pile driving, and the 121 dB ZOI during active vibratory pile driving or removal activity.

5.2 Method of Incidental Taking

The method of incidental take is Level B acoustical harassment of any marine mammal occurring within the 160 dB ZOI during impact pile driving, and the 121 dB ZOI during active vibratory pile driving or removal activity.

6.0 Number of Marine Mammals that May Be Affected

By age, sex, and reproductive condition (if possible), the number of marine mammals (by species) that may be taken by each type of taking identified in [Section 5], and the number of times such takings by each type of taking are likely to occur.

This section summarizes potential incidental take of marine mammals during the Mukilteo project. Section 6.2 describes the methods used to calculate the estimated ZOI and Section 6.3 describes the potential incidental take for each marine mammal species. Section 6.4 provides the number of marine mammals by species for which take authorization is requested.

Due to vibratory pile removal and driving source levels, this IHA application will incidentally take by Level B acoustical harassment small numbers of harbor seal, northern elephant seal, California sea lion, Steller sea lion, transient killer whale, gray whale, humpback whale, Minke whale, harbor porpoise, Dall's porpoise and common bottlenose dolphin. With the exception of harbor seals and California sea lions, it is anticipated that all of the marine mammals that enter a Level B acoustical harassment ZOI will be exposed to pile driving noise only briefly as they are transiting the area. Only harbor seals and California sea lions are expected to forage and haul out in the Mukilteo ZOIs with any frequency and could be exposed multiple times during a project.

6.1 Estimated Duration of Pile Driving

Durations are provided in Table 6-1.

6.2 Estimated Zones of Influence/Zones of Exclusion

Distances to ZOIs and ZOEs are provided in Table 6-2.

Method	Pile Size (inch)	Season 4 Planned	Minutes per Pile	Duration (hours)	Piles per day	Days
Vibratory Removal	12 (timber)	290	15	19	10	29
Vibratory Removal	24 (steel)	69	15	17	3	23
Vibratory Drive	30 (steel)	4	30	2	2	2
Total				38		54

Table 6-1 Durations

			Level A ZOE (m)					Level B	
Method	Pile Size (in)	LF Cetacean	MF Cetacean	HF Cetacean	Phocid	Otariid	Distance (km)	Area (km ²)	
Vibratory	12	3.7	0.3	5.4	2.2	0.2	1.2	2.3	
Removal	24	12.1	1.1	18.0	7.4	0.5	8	66	
Vibratory Driving	30	50.2	4.5	74.3	30.5	2.1	8	66	
Shutdown Zones	All sizes	75	75	75	35	35	SRKW 1.2/8		

Table 6-2 ZOE/Shutdown and ZOI Distances/Areas

6.2.1 Zones of Influence

Table 6-2 summarizes each of the following ZOIs:

 Table 6-3 Zone of Influence summary

ZOI	Pile Type	Method	Threshold/ SSV	Distance to Threshold	ZOI Area (km ²)	Days Present
ZOI-1	12-inch timber	Vibratory Removal	SSV	1.2 km	2.3	29
ZOI-2	24/30-inch steel	Vibratory removal/installation	SSV	8.0 km	66	25

6.2.2 Zones of Exclusion/Shutdown Zones

Monitoring ZOEs/Shutdown Zones have been conservatively simplified (35 m for seals/sea lions; 75 m for cetaceans) in order to make PSO monitoring easier to implement during construction. SRKW shutdown is established at the Level B harassment SSV.

 Table 6-4
 Zones of Exclusion/Shutdown

ZOI	Pile Type/ Method	Species	Distance to ZOE/Shutdown	Days Present
ZOE-1/2	All	Pinniped	35 m	25
ZOE-1/2	All	Cetacean (except SRKW)	75 m	29
ZOE-1	12-inch timber/ vibratory	SRKW	1.2 km	29
ZOE-2	24/30-inch steel/ vibratory	SRKW	8 km	25

6.2.3 Airborne Zones of Influence

Airborne noises can affect pinnipeds, especially resting seals hauled out on rocks or sand spits. In-air thresholds will be reached at the following distances:

 Noise generated during vibratory installation and/or removal of timber and hollow steel piles, H-piles (96.9 dB at 50 feet) will reach the harbor seal in-air threshold (90 db_{RMS}) at approximately 34 m/111 ft., and is below the threshold for sea lions.

The nearest documented harbor seal haul out site to the Mukilteo ferry terminal is 4 miles north on log rafts present in the East Waterway of Port Gardener Harbor (Figure 3-2). The closest documented California sea lion haul out sites to the Mukilteo Ferry Terminal are 3.2 miles northeast on the Everett Harbor buoys (Figure 3-3). The number of California sea lions using the buoys is less than 20 (WDFW 2000).

During vibratory pile driving and removal, temporary in-air disturbance will be limited to harbor seals swimming on the surface through the immediate terminal area, or hauled-out on beaches or boat ramps within 34 m/111ft.

6.3 Estimated Level B Incidental takes

Incidental take is estimated by the likelihood of a marine mammal being present within a ZOI during active pile driving or removal. No Level A take is requested in this application.

For most species, take will be calculated using density data. Where a low to high range of densities is given for species in Section 3, the more conservative high density will be used.

For Northern Elephant seal, Humpback whale, Transient killer whale, and bottlenose and common dolphin, take based on density is too low. Referenced observations in Section 3 more accurately reflect presence for these species, and so take is based on individuals or groups observed. No take for Southern Resident killer whale is requested.

Density Based Take

The calculation for density-based take is:

• Density $\mathbf{X} \text{ km}^2 \mathbf{X}$ days ZOI is present = Level B take.

For the project ZOI's:

- ZOI-1: Density X 2.3 km² X 29 days
- ZOI-2: Density X 66 km² X 25 days

Take based on density calculations is shown in Table 6-5.

Species	High Density	ZOI-1	ZOI-2	Total Level B
	(km ²)	Level B Takes	Level B Takes	Take
Harbor Seal	2.21^{1}	147	3,647	3,794
California Sea Lion	0.1266 ¹	8	209	217
Steller Sea Lion	0.03681	2	69	71
Gray Whale	0.00511	0	8	8
Killer Whale	0.0020911	0	4	0 ³
Southern Resident				
Minke Whale	0.002^{1}	0	3	3
Harbor Porpoise	0.792	53	1,307	1,360
Dall's Porpoise	0.047976^{1}	3	79	82
Northern Elephant Seal	0.00011	0	0	0^{4}
Humpback whale	0.000141	0	0	0^{4}
Killer Whale	0.0023731	0	4	44
Transient				
Common Bottlenose Dolphin	0	0	0	04

Table 6-5	Level B	Density	Based	Takes
		Density	Dascu	Lanco

¹Navy 2019

²Evenson 2016
³No Southern Resident Killer Whale take is requested
⁴Take will be based on observations

Observation-based Take

The take estimates are:

- <u>Northern Elephant Seal</u> During the Mukilteo project, 2 individuals have been observed. Observations have been of single individuals, not groups. It is assumed that one individual may be present in the ZOI once a month during the in-water work window (7 months), or 7 animals.
- <u>Humpback Whale</u> During the Mukilteo project, 2 individuals have been observed. Observations have been of single individuals, not groups. It is assumed that one individual may be present in the ZOI once a month during the in-water work window (7 months), or 7 animals.
- <u>Transient killer whale</u> take is based on maximum group size observed during the project. Two groups of 8 individuals have been observed. It is assumed that one group of 8 animals may be present in the ZOI once a month during the in-water work window (7 months), or 56 animals.
- <u>Common Bottlenose Dolphin</u> The bottlenose dolphin estimate is based on sightings data from Cascadia Research Collective. Between September 2017 and March 2018, a

group of up to 5-6+ individuals was sighted in South Puget Sound (EPS 2018). It is assumed that this group is still present in the area. Given how rare Common bottlenose dolphins are in the area, it is unlikely they would be present on a daily basis. Instead it is assumed that one group size of 7 animals may be present in the ZOI once a month during the in-water work window (7 months), or 49 animals.

No take for Southern Resident killer whale is requested.

6.4 Number of takes for Which Authorization is Requested

The total number of takes for which for Level B acoustical harassment authorization is requested is presented in the table below:

Species	Level B take Request
Harbor Seal	3,794
Northern Elephant Seal	7
California Sea Lion	217
Steller Sea Lion	71
SR Killer Whale	0
Transient Killer Whale	56
Gray Whale	8
Humpback Whale	7
Minke Whale	3
Harbor Porpoise	1,360
Dall's Porpoise	82
Common Bottlenose Dolphin	49

Table 6-6. Harassment take Requests

7.0 Anticipated Impact on Species or Stocks

The anticipated impact of the activity upon the species or stock of marine mammals.

WSF is requesting authorization for Level B acoustical harassment take of marine mammals as listed in Table 6-1. Any incidental takes will very likely be multiple takes of individuals, rather than single takes of unique individuals. The stock take calculations below assume takes of individual animals, instead of repeated takes of a smaller number; therefore the stock take percentage calculations are very conservative.

These numbers in relation to the overall stock size of each species are summarized in Table 7-1. Twenty percent of stock is used as a small numbers guideline.

If incidental takes occur, it is expected to only result in short-term changes in behavior and potential temporary hearing threshold shift. These takes would be unlikely to have any impact on stock recruitment or survival and therefore, would have a negligible impact on the stocks of these species.

Species	Stock Size	Take Request	Take Request % of Stock	20% of Stock
Harbor Seal	11,036	3,794	34	2,207
Northern Elephant Seal	81,368	7	0.009	16,274
California Sea Lion	296,750	217	0.07	59,350
Steller Sea Lion	41,638	71	0.17	8,328
SR Killer Whale	73	0	0	15
Transient Killer Whale	243	56	23	48
Gray Whale	20,990	8	0.04	4,198
Humpback Whale	2,784	7	0.25	557
Minke Whale	369	3	0.81	73
Harbor Porpoise	10,682	1,360	13	2,136
Dall's Porpoise	42,000	82	0.20	8,400
Common Bottlenose Dolphin	1,255	49	4	251

Table 7-1Level B Acoustical Harassment take Request Percent of Total Stock

Anticipated Impact on Subsistence 8.0

The anticipated impact of the activity on the availability of the species or stocks of marine mammals for subsistence uses.

Impacts to subsistence are specific to Alaska. There are no relevant subsistence uses of marine mammals implicated by this action.

9.0 Anticipated Impact on Habitat

The anticipated impact of the activity upon the habitat of the marine mammal populations, and the likelihood of restoration of the affected habitat.

9.1 Introduction

Construction activities will have temporary impacts on marine mammal habitat by through increases in in-water and in-air sound pressure levels from pile driving and removal. Other potential temporary impacts are water quality (increases in turbidity levels) and prey species distribution. Best management practices (BMPs) and minimization practices used by WSF to minimize potential environmental effects from project activities are outlined in Section 11 - Mitigation Measures.

9.2 In-air Noise Disturbance to Haul Outs

The project is scheduled to begin September 1, 2018, and all harbor seal pups are weaned in this region of Puget Sound by October 1. Disturbance of pinnipeds hauled out near the project, and surfacing when swimming within the threshold distances is possible.

During vibratory pile driving and removal, temporary in-air disturbance will be limited to harbor seals swimming on the surface through the immediate terminal area, or hauled-out on beaches or boat ramps within 34 m/111 ft.

During impact pile driving, temporary in-air disturbance will be limited to harbor seals or northern elephant seals swimming on the surface through the immediate terminal area, or hauled-out on beaches or boat ramps within 152 m/500 ft., and within 48 m/158 ft. for sea lions.

In-air noise from non-pile driving construction activities is not expected to cause in-air disturbance to pinnipeds, because the Mukilteo Ferry Terminal is currently subject to similar existing levels of in-air noise from ferry, boat, road and other noise sources.

9.3 Underwater Noise Disturbance

NMFS is currently using an in-water noise disturbance threshold of 120 dB_{RMS} for pinnipeds and cetaceans for continuous noise sources, unless the site-specific background noise is higher than 120 dB_{RMS}. In that case, the higher background becomes the threshold. The distance to the Level B acoustical harassment thresholds is described in Section 1.6.4, Attenuation to NMFS Thresholds.

There are several short-term and long-term effects from noise exposure that may occur to marine mammals, including impaired foraging efficiency and its potential effects on movements of prey, harmful physiological conditions, energetic expenditures and temporary or permanent hearing threshold shifts due to chronic stress from noise (Southall et al. 2007). The majority of the research on underwater noise impacts on whales is associated with vessel and navy sonar disturbances and does not often address impacts from pile driving.

The threshold levels at which anthropogenic noise becomes harmful to killer whales are poorly understood (NMFS 2008). Because whale occurrence is occasional near the project site, in-water noise impacts are localized and of short duration, any impact on individual cetaceans will be limited. Because there are no documented haul outs within the immediate project area, pinniped disturbance will be limited to individuals transiting the ZOI. Pile removal and driving will expose marine mammals to potential Level B harassment. The impact pile driving Zone of Exclusion (ZOE) will be monitored, and work ceased if any marine mammals approaches the ZOE.

9.4 Water and Sediment Quality

Short-term turbidity is a water quality effect of in-water work, including pile driving. WSF must comply with state water quality standards during these operations by limiting the extent of turbidity to the immediate project area.

Roni and Weitkamp (1996) monitored water quality parameters during a pier replacement project in Manchester, Washington. The study measured water quality before, during and after pile removal and driving. The study found that construction activity at the site had "little or no effect on dissolved oxygen, water temperature and salinity", and turbidity (measured in nephelometric turbidity units [NTU]) at all depths nearest the construction activity was typically less than 1 NTU higher than stations farther from the project area throughout construction.

Similar results were recorded during pile removal operations at two WSF ferry facilities. At the Friday Harbor terminal, localized turbidity levels within the regulatory compliance radius of 150 feet (from three timber pile removal events) were generally less than 0.5 NTU higher than background levels and never exceeded 1 NTU. At the Eagle Harbor maintenance facility, within 150 feet, local turbidity levels (from removal of timber and steel piles) did not exceed 0.2 NTU above background levels (WSDOT 2014). In general, turbidity associated with pile installation is localized to about a 25-foot radius around the pile (Everitt et al. 1980).

Cetaceans are not expected to be close enough to the Mukilteo Ferry Terminal to experience turbidity, and any pinnipeds will be transiting the terminal area and could avoid localized areas of turbidity. Therefore, the impact from increased turbidity levels is expected to be discountable to marine mammals.

9.5 Passage Obstructions

Pile driving and removal at the Mukilteo Ferry Terminal will not obstruct movements of marine mammals. Pile work at Mukilteo will occur within 500 feet of the shoreline. A construction barge may be used during the project. The barge will be anchored and/spudded. No dynamic positioning system (DPS) will be used. In a previous concurrence letter for the Vashon Island Dolphin Replacement Project (NMFS 2008b), NMFS stated the following:

Vessels associated with any project are primarily tug/barges, which are slow moving, follow a predictable course, do not target whales, and should be easily detected by whales when in transit. Vessel strikes are extremely unlikely and any potential encounters with Southern Residents [killer whales] are expected to be sporadic and transitory in nature.

Similarly, vessel strikes are unlikely for the proposed project.

9.6 Conclusions Regarding Impacts on Habitat

The most likely effects on marine mammal habitat from the proposed project are temporary, short duration noise and water quality effects. The direct loss of habitat available to marine mammals during construction due to noise, water quality impacts and construction activity is expected to be minimal. All cetacean species utilizing habitat near the terminal will be transiting the terminal area.

Any adverse effects on prey species during project construction will be short term. Given the large numbers of fish and other prey species in Puget Sound, the short-term nature of effects on fish species and the mitigation measures to protect fish during construction (use of a vibratory hammer when possible, use of a bubble curtain during steel pile impact pile driving, BMPs, conducting work within the approved in-water work window), the proposed project is not expected to have measurable effects on the distribution or abundance of potential marine mammal prey species.

Passage is not expected to be obstructed as a result of the proposed project. Any temporary obstruction due to barge placement will be localized and limited in duration, and a traveling barge is too slow to strike marine mammals.

10.0 Anticipated Impact of Loss or Modification of Habitat

The anticipated impact of the loss or modification of the habitat on the marine mammal populations involved.

The proposed project will not result in a significant permanent loss or modification of habitat for marine mammals or their food sources. The most likely effects on marine mammal habitat for the proposed project are temporary, short duration in-water noise, temporary prey (fish) disturbance, and localized, temporary water quality effects. The direct loss of habitat available to marine mammals during the project is expected to be minimal. These temporary impacts have been discussed in detail in Section 9.0, Anticipated Impact on Habitat.

11.0 Mitigation Measures

The availability and feasibility (economic and technological) of equipment, methods, and manner of conducting such activity or other means of effecting the least practicable adverse impact upon the affected species or stocks, their habitat, and on their availability for subsistence uses, paying particular attention to rookeries, mating grounds, and areas of similar significance.

WSF activities are subject to federal, state and local permit regulations. WSF has developed and routinely uses the best guidance available (e.g., BMPs and mitigation measures) to avoid and minimize (to the greatest extent possible) impacts on the environment, ESA species, designated critical habitats and species protected under the MMPA.

The mitigation measures will be employed during all construction activities at the Mukilteo ferry terminal. The language in each mitigation measure is included in the Contract Plans and Specifications and must be agreed upon by the contractor prior to any construction activities. Upon signing the contract, it becomes a legal agreement between the Contractor and WSF. Failure to follow the prescribed mitigation measures is a contract violation.

General mitigation measures used for all construction practices are listed first (Section 11.1, All Construction Activities), followed by specific mitigation measures for pile related activities (Section 11.2, Pile Removal and Installation). The mitigation measures listed under Section 11.1 apply to different activities and are, therefore, listed additional times where appropriate.

11.1 All Construction Activities

All WSF construction is performed in accordance with the current WSDOT Standard Specifications for Road, Bridge, and Municipal Construction. Special Provisions contained in preservation and repair contracts are used in conjunction with, and supersede, any conflicting provisions of the Standard Specifications. Mitigation measures include:

- All construction equipment will comply with applicable equipment noise standards of the U.S. Environmental Protection Agency, and all construction equipment will have noise control devices no less effective than those provided on the original equipment.
- WSF will have a WSF inspector on site during construction. The role of the inspector is to ensure contract compliance. The inspector and the contractor will have a copy of the Contract Plans and Specifications on site and will be aware of all requirements. The inspector will also be trained in environmental provisions and compliance.
- WSF will obtain Hydraulic Project Approval (HPA) from WDFW as appropriate and the contractor will follow the conditions of the HPA. HPA requirements will be listed in the contract specifications, and will be a legal requirement of the contract.
- The contractor shall be responsible for the preparation of a Spill Prevention, Control and Countermeasures (SPCC) plan to be used for the duration of the project:
- The plan shall be submitted to the Project Engineer prior to the commencement of any construction activities. A copy of the plan with any updates will be maintained at the work site by the contractor.

Request for an Incidental Harassment Authorization

- The SPCC plan shall identify construction planning elements and recognize potential spill sources at the site. The SPCC plan shall outline BMPs, responsive actions in the event of a spill or release and identify notification and reporting procedures. The SPCC plan shall also outline contractor management elements such as personnel responsibilities, project site security, site inspections and training.
- The SPCC will outline what measures shall be taken by the contractor to prevent the release or spread of hazardous materials, either found on site and encountered during construction but not identified in contract documents, or any hazardous materials that the contractor stores, uses, or generates on the construction site during construction activities. These items include, but are not limited to gasoline, oils and chemicals. Hazardous materials are defined in Revised Code of Washington (RCW) 70.105.010 under "hazardous substance."
- The contractor shall maintain, at the job site, the applicable spill response equipment and material designated in the SPCC plan.
- The contractor shall regularly check fuel hoses, oil drums, oil or fuel transfers valves, fittings, etc. for leaks, and shall maintain and store materials properly to prevent spills.
- No petroleum products, chemicals or other toxic or deleterious materials shall be allowed to enter surface waters.
- WSF will comply with water quality restrictions imposed by the Washington State Department of Ecology (Ecology) (Chapter 173-201A WAC), which specify a mixing zone beyond which water quality standards cannot be exceeded. Compliance with Ecology's standards is intended to ensure that fish and aquatic life are being protected to the extent feasible and practicable.
- Wash water resulting from washdown of equipment or work areas shall be contained for proper disposal, and shall not be discharged into state waters unless authorized through a state discharge permit.
- Equipment that enters the surface water shall be maintained to prevent any visible sheen from petroleum products appearing on the water.
- There shall be no discharge of oil, fuels, or chemicals to surface waters, or onto land where there is a potential for reentry into surface waters.
- No cleaning solvents or chemicals used for tools or equipment cleaning shall be discharged to ground or surface waters.
- The contractor shall regularly check fuel hoses, oil drums, oil or fuel transfer valves, fittings, etc. for leaks, and shall maintain and store materials properly to prevent spills.

11.2 Timing Windows

Timing restrictions are used to avoid in-water work when ESA-listed salmonids are most likely to be present. The combined work window for in-water work for the Mukilteo ferry terminal is July 16 through February 15. Actual construction activities are planned to take place from September 1, 2018 and February 15, 2019.

11.3 Pile Removal BMPs

The following pile removal mitigation measures are proposed by WSF to reduce impacts on marine mammals to the lowest extent practicable. For WSF's Construction Minimization Measures, see WSF Biological Assessment Reference Section 2.3. Additional BMPs that will be incorporated into the project include:

- Hydraulic water jets will not be used to remove piles.
- Marine mammal monitoring during vibratory pile removal will be employed for the Level B ZOI (see Appendix B, Marine Mammal Monitoring). WSF will conduct briefings with the construction supervisors and the crew, and marine mammal observer(s) prior to the start of pile removal to discuss marine mammal monitoring protocol and requirement to halt work.
- The crane operator will be instructed to remove piles slowly to minimize turbidity in the water as well as sediment disturbance.
- The operator will "wake up "the pile to break the bond with surrounding sediment by vibrating the pile slightly prior to removal. Waking up the pile avoids pulling out large blocks of sediment and usually results in little to no sediment attached to the pile during withdrawal.
- The work surface on the barge deck or pier will include a containment basin for pile and any sediment removed during pulling. The basin will be constructed of durable plastic sheeting with sidewalls supported by hay bales or a support structure to contain all sediment. The containment basin shall be removed and disposed of in accordance with applicable federal and state regulations.
- The work surface shall be cleaned by properly disposing of sediment or other residues along with cut-off piling.
- Upon removal from the substrate the pile shall be moved immediately from the water into the containment basin. The pile shall not be shaken, hosed-off, stripped or scraped off, left hanging to drip or any other action intended to clean or remove adhering material from the pile.
- Water quality will be monitored during pile removal. Work barges and dredged material disposal barges will not be allowed to ground out or rest on the substrate, or be over or within 25 feet of vegetated shallows (except where such vegetation is limited to statedesignated noxious weeds).
- Barges will not be anchored over vegetated shallows for more than 24 hours.
- Demolition and construction materials shall not be stored where high tides, wave action, or upland runoff can cause materials to enter surface waters.

11.4 Pile Driving BMPs

BMPs to be employed during pile installation include:

- Marine mammal monitoring during vibratory or impact pile installation will be employed for the Level B ZOI (see Appendix B, Marine Mammal Monitoring). WSF will conduct briefings with the construction supervisors and the crew, and marine mammal observer(s) prior to the start of pile removal to discuss marine mammal monitoring protocol and requirement to halt work.
- The vibratory hammer method will be used to the extent possible to drive steel piles to minimize noise levels.
- A bubble curtain or other noise attenuation device will be employed during impact installation or proofing of steel piles unless the piles are driven in the dry.
- The contractor will be required to retrieve any floating debris generated during construction. Any debris in the containment boom will be removed by the end of the work day or when the boom is removed, whichever occurs first. Retrieved debris will be disposed of at an upland disposal site.
- Steel, plastic/steel, concrete, or ACZA-treated wood piling will be used. No creosote-treated timber piling will be used.

11.5 Safety Zone/Zone of Exclusion

The purpose of the safety zone/Zone of Exclusion (ZOE) is to ensure that noise-generating activities are shutdown before Level A (injury) take occurs from cetaceans entering a relevant ZOE while vibratory pile removal or driving is active. WSF will establish exclusion zones that are more conservative than the Level A harassment distances.

			Level A ZOE (m)					Level B	
Method	Pile Size (in)	LF Cetacean	MF Cetacean	HF Cetacean	Phocid	Otariid	Distance (km)	Area (km ²)	
Vibratory	12	5.1	0.4	7.5	3.1	0.2	1.2	2.3	
Removal	24	12.1	1.1	18.0	7.4	0.5	8	66	
Vibratory Driving	30	50.2	4.5	74.3	30.5	2.1	8	66	
Shutdown Zones	All sizes	75	75	75	35	35	SRKW 1.2/8		

 Table 11-1.
 Marine Mammal ZOE and ZOI Distances

12.0 Arctic Subsistence Uses, Plan of Cooperation

Where the proposed activity would take place in or near a traditional Arctic subsistence hunting area and/or may affect the availability of a species or stock of marine mammal for Arctic subsistence uses, the applicant must submit either a plan of cooperation or information that identifies what measures have been taken and/or will be taken to minimize any adverse effects on the availability of marine mammals for subsistence uses. A plan must include the following:

(i) A statement that the applicant has notified and provided the affected subsistence community with a draft plan of cooperation;

(ii) A schedule for meeting with the affected subsistence communities to discuss proposed activities and to resolve potential conflicts regarding any aspects of either the operation or the plan of cooperation;

(iii) A description of what measures the applicant has taken an/or will take to ensure that proposed activities will not interfere with subsistence whaling or sealing; and

(iv) What plans the applicant has to continue to meet with the affected communities, both prior to and while conducting activity, to resolve conflicts and to notify the communities of any changes in the operation.

This section is not applicable. The proposed activities will take place in Washington State, specifically in Puget Sound. No activities will take place in or near a traditional Arctic subsistence hunting area.

13.0 Monitoring and Reporting Plan

The suggested means of accomplishing the necessary monitoring and reporting that will result in increased knowledge of the species, the level of taking or impacts on populations of marine mammals that are expected to be present while conducting activities and suggested means of minimizing burdens by coordinating such reporting requirements with other schemes already applicable to persons conducting such activity. Monitoring plans should include a description of the survey techniques that would be used to determine the movement and activity of marine mammals near the activity site(s) including migration and other habitat uses, such as feeding.

13.1 Coordination

WSF will conduct briefings with the construction supervisors and the crew, and marine mammal observer(s) prior to the start of pile driving and removal to discuss marine mammal monitoring protocol and requirement to halt work.

Prior to the start of pile driving, the Orca Network and/or Center for Whale Research will be contacted to find out the location of the nearest marine mammal sightings. Daily sightings information can be found on the Orca Network Twitter site (<u>https://twitter.com/orcanetwork</u>), which will be checked several times a day.

The Orca Sightings Network consists of a list of over 600 (and growing) residents, scientists, and government agency personnel in the U.S. and Canada. Sightings are called or emailed into the Orca Network and immediately distributed to other sighting networks including: the Northwest Fisheries Science Center of NOAA Fisheries, the Center for Whale Research, Cascadia Research, the Whale Museum Hotline and the British Columbia Sightings Network.

'Sightings' information collected by the Orca Network includes detection by hydrophone. The SeaSound Remote Sensing Network is a system of interconnected hydrophones installed in the marine environment of Haro Strait (west side of San Juan Island) to study orca communication, in-water noise, bottomfish ecology and local climatic conditions. A hydrophone at the Port Townsend Marine Science Center measures average in-water sound levels and automatically detects unusual sounds. These passive acoustic devices allow researchers to hear when different marine mammals come into the region. This acoustic network, combined with the volunteer (incidental) visual sighting network allows researchers to document presence and location of various marine mammal species.

With this level of coordination in the region of activity, WSF will be able to get real-time information on the presence or absence of whales before starting any pile removal or driving.

13.2 Visual Monitoring

WSF has developed a monitoring plan that will collect sighting data for each marine mammal species observed during pile removal activities. Monitoring for marine mammal presence will take place 30 minutes before, during and 30 minutes after pile removal.

Request for an Incidental Harassment Authorization

Marine mammal behavior, overall numbers of individuals observed, frequency of observation and the time corresponding to the daily tidal cycle will also be included. Qualified marine mammal observers will be present on site during pile installation and removal. A monitoring plan is provided in Appendix J.

13.3 Reporting Plan

WSF will provide NMFS with a draft monitoring report within 90 days of the conclusion of monitoring. This report will detail the monitoring protocol, summarize the data recorded during monitoring and estimate the number of marine mammals that may have been harassed.

If comments are received from the Regional Administrator on the draft report, a final report will be submitted to NMFS within 30 days thereafter. If no comments are received from NMFS, the draft report will be considered to be the final report.

14.0 Coordinating Research to Reduce and Evaluate Incidental take

Suggested means of learning of, encouraging, and coordinating research opportunities, plans, and activities relating to reducing such incidental taking and evaluating its effects.

In-water noise generated by pile removal and driving at the project site is the primary issue of concern relative to local marine mammals. WSF has conducted research on sound propagation from vibratory and impact hammers, and plans on continuing that research to provide data and new technologies for future ferry terminal projects. Impact and vibratory noise will be monitored during the project, in order to collect further data.

As described in Section 13, WSF will coordinate with local marine mammal sighting networks (Orca Network and/or the Center for Whale Research) to gather information on the location of whales prior to initiating pile removal. Marine mammal monitoring will be conducted to collect information on presence of marine mammals within the ZOIs for this project.

15.0 Literature Cited

50 FR 226. Endangered and Threatened Wildlife and Plants; Proposed Rulemaking To Revise Critical Habitat for the Southern Resident Killer Whale Distinct Population Segment. National Marine Fisheries Service. September 19, 2019.

68 FR 31980. Regulations Governing the Taking and Importing of Marine Mammals; Eastern North Pacific Southern Resident Killer Whales. May 29, 2003.

70 FR 69903. Endangered and Threatened Wildlife and Plants: Endangered Status for Southern Resident Killer Whales. November 18, 2005.

71 FR 69054. Endangered and Threatened Species; Designation of Critical Habitat for Southern Resident Killer Whale. November 29, 2006.

78 FR 66140. Endangered and Threatened Species; Delisting of the Eastern Distinct Population Segment of Steller Sea Lion Under the Endangered Species Act; Amendment to Special Protection Measures for Endangered Marine Mammals. November 4, 2013.

Baird, R.W. 2003. Update COSEWIC status report on the harbour porpoise *Phocoena phocoena* (Pacific Ocean population) in Canada, *in* COSEWIC assessment and update status report on the harbour porpoise *Phocoena phocoena* (Pacific Ocean population) in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1–22 pp.

——. 2000. The killer whales, foraging specializations and group hunting. Pages 127-153 in J. Mann, R.C. Connor, P.L. Tyack, and H. Whitehead (editors). Cetacean societies: field studies of dolphins and whales. University of Chicago Press, Chicago, Illinois.

Baird, R.W. and L.M. Dill. 1995. Occurrence and behavior of transient killer whales: seasonal and pod-specific variability, foraging behavior and prey handling. *Canadian Journal of Zoology* 73:1300–1311.

Barlow, J. 2016. Cetacean abundance in the California current estimated from ship-based line-transect surveys in 1991-2014. Southwest Fisheries Science Center, Administrative Report, LJ-2016-01. 63 p.

Bigg, M.A. 1981. Harbour seal, *Phoca vitulina*, Linnaeus, 1758 and *Phoca largha*, Pallas, 1811. Pp. 1-27, In S.H. Ridgway and R.J. Harrison (eds.), Handbook of Marine Mammals, vol.2: Seals. Academic Press, New York, New York.

_____. 1969. The harbour seal in British Columbia. Fish. Res. Board Can. Bull. 172. 31 p.

Brown, R., and B. Mate. 1983. Abundance, movements and feeding habits of harbor seals, *Phoca vitulina*, at Netarts and Tillamook Bays, Oregon. *Fish. Bull.* 81:291–301.

Burgess, W.C., S.B. Blackwell, and R. Abbott. 2005. Underwater acoustic measurements of vibratory pile driving at the Pipeline 5 crossing in the Snohomish River, Everett, Washington, Greeneridge Rep. 322-2, Rep. from Greeneridge Sciences Inc., Santa Barbara, California, for URS Corporation, Seattle, Washington, and the City of Everett, Everett, Washington. 35 pp.

Calambokidis, John. 2008. Personal communication with Erin Britton. July 30, 2008. Cascadia Research, Olympia, Washington.

Calambokidis, J. and R.W. Baird. 1994. Status of marine mammals in the Strait of Georgia, Puget Sound, and the Juan de Fuca Strait, and potential human impacts. *Canadian Technical Report of Fisheries and Aquatic Sciences* 1948:282–300.

Calambokidis, J., G.H. Steiger, D.K. Ellifrit, B.L. Troutman, and C.E. Bowlby. 2004. Distribution and abundance of humpback whales (*Megaptera novaeangliae*) and other marine mammals off the northern Washington coast. *Fish. Bull.* 102:563–580.

Calambokidis, J., Osmek, S. and Laake, J. L. 1997. Aerial surveys for marine mammals in Washington and British Columbia inside waters. Final Contract Report for Contract 52ABNF-6-00092.

Calambokidis, J., J.L. Laake, and A. Pérez. 2014. Updated analysis of abundance and population structure of seasonal gray whales in the Pacific Northwest, 1996-2012. Document submitted to the Range-Wide Workshop on Gray Whale Stock Structure, April 8-11, 2014 in La Jolla, CA. 75p.

Carr, S.A., M.H. Laurinolli, C.D.S. Tollefsen, and S.P. Turner. 2006. Cacouna Energy LNG Terminal: Assessment of Underwater Noise Impacts. Technical Report prepared by JASCO Research, Ltd. for Golder Associates Ltd., 65 pp.

Carretta, J. V., K. A. Forney, M. M. Muto, J. Barlow, J. Baker, B. Hanson, and M. Lowry. 2007. US Pacific Marine Mammal Stock Assessments: 2007. NOAA-TM-NMFS-SWFSC-414. U.S. Department of Commerce. January 2007.

Cascadia Research Collective. 2012. Another Rare Visitor to Southern Puget Sound Found Dead: Longbeaked Common Dolphins Stranded in South Puget Sound, 28 March, 2012. http://www.cascadiaresearch.org/CommonDolphinStrand2012.htm

Center for Whale Research (CWR). 2019. SRKW population. <u>https://www.whaleresearch.com/orca-population/</u> The Center for Whale Research, Friday Harbor WA. Accessed 12/10/19.

Dorsey, E.M., S.J. Stern, A.R. Hoelzel and J. Jacobsen. 1990. Minke Whale *Balaenoptera acutorostrata* from the west coast of North America: individual recognition and small-scale site fidelity. *Rept. Int. Whal. Comm.* Special Issue 12:357–368.

EPS. 2018. Encyclopedia of Puget Sound. Marine Mammals from Distant Places visit Puget Sound. <u>https://www.eopugetsound.org/magazine/ssec2018/marine-mammals</u> August 21, 2018.

Evenson, J.R., D. Anderson, B.L. Murphie, T.A. Cyra, and J. Calambokidis. 2016. Disappearance and return of harbor porpoise to Puget Sound: 20 year pattern revealed from winter aerial surveys. Technical Report. Washington Department of Fish and Wildlife, Wildlife Program and Cascadia Research Collective, Olympia, WA.

Everitt, R.D., C.H. Fiscus, and R.L. DeLong. 1980. Northern Puget Sound Marine Mammals. DOC/EPA Interagency Energy/ Environ. R&D Program. Doc. #EPA-6009/7-80-139, U.S. Environmental Protection Agency, Washington, D.C. 134 p.

Finneran, J.J. 2016. Auditory weighting functions and TTS/PTS exposure functions for cetaceans and marine carnivores. May 2016. San Diego, California: SPAWAR Systems Center Pacific.

Fisher, H.D. 1952. The status of the harbour seal in British Columbia, with particular reference to the Skeena River. *Fish. Res. Bd. Can. Bull.* 93:58 pp.

Gearin, P. 2008. Personal communication with Sharon Rainsberry on October 20, 2008. National Marine Fisheries Service. National Marine Mammal Laboratory, Seattle, Washington.

Gearin, P., R. Pfeifer, and S. Jeffries. 1986. Control of California sea lion predation of winter-run steelhead at the Hiram M. Chittenden Locks, Seattle, December 1985-April 1986 with observations on sea lion abundance and distribution in Puget Sound. Washington Department of Game Fishery Management Report 86-20, Olympia, Washington. 108 p.

Gisiner, R.C. 1985. Male territorial and reproductive behavior in Steller sea lion. *Eumetopias jubatus*. Ph.D. Thesis, University of California, Santa Cruz, California. 145 pp.

Request for an Incidental Harassment Authorization

Green, G.A., R.A. Grotefendt, M.A. Smultea, C.E. Bowlby, and R.A. Rowlett. 1993. Delphinid aerial surveys in Oregon and Washington waters. Final Report prepared for NMFS, National Marine Mammal Laboratory, 7600 Sand Point Way, NE, Seattle, Washington, 98115, Contract #50ABNF200058.

Green, G.A., J.J. Brueggeman, R.A. Grotefendt, C.E. Bowlby, M.L. Bonnell, and K.C. Balcomb, III. 1992. Cetacean distribution and abundance off Oregon and Washington. Ch. 1. In: Oregon and Washington Marine Mammal and Seabird Surveys. OCS Study 91-0093. Final Report prepared for Pacific OCS Region, Minerals Management Service, U.S. Department of the Interior, Los Angeles, California.

Greeneridge. 2007. Greeneridge Sciences Inc. Radius Calculator web page. Available at: http://www.greeneridge.com>.

Guan, S. 2017. Personal communication (email) between Shane Guan (NMFS), Jeff Dreier (WSDOT) and Rick Huey (WSF) on November 1, 2017.

_____. 2014. Personal communication between Shane Guan (NMFS) and Rick Huey (WSF) on February 10, 2014.

Hall, A.M. 2004. Seasonal abundance, distribution and prey species of harbour porpoise (*Phocoena*) *phocoena*) in southern Vancouver Island waters. Master Thesis. University of British Columbia.

Herder, M.J. 1983. Pinniped fishery interactions in the Klamath River system, July 1979 to October 1980. Southwest Fish. Cent., Admin. Rep. LJ8312C, 71 p. (Available from Southwest Fisheries Science Center, Natl. Mar. Fish. Serv., NOAA, P.O. Box 271, La Jolla, California 92038.)

Huber, H. 2010. Personal communication with Gregory A. Green on May 6, 2010. National Marine Mammal Laboratory, Seattle, Washington.

International Whaling Commission (IWC). 2012. Report of the Scientific Committee. J. Cetacean Res. Manage. (Suppl.) 13.

Jeffries, S. 2013. Seals Tell Tale of Sound's Health. Seattle Times. May 28, 2013. Seattle, Washington

———. 2008. Personal communication with Sharon Rainsberry on October 28, 2008. WDFW – Marine Mammal Investigations, Lakewood, Washington.

Jeffries, S., H. Huber, J. Calambokidis, and J. Laake. 2003. Trends and status of harbor seals in Washington State: 1978-1999. *Journal of Wildlife Management* 67(1):208–219.

Jeffries S.J., P.J. Gearin, H.R. Huber, D.L. Saul, and D.A. Pruett. 2000. Atlas of seal and sea lion haul out sites in Washington. Washington Department of Fish and Wildlife, Wildlife Science Division, 600 Capitol Way North, Olympia, Washington. 150 p.

Laughlin, Jim. 2017. Mukilteo Multimodal Phase 2 30-inch Steel Pile Vibratory Installation – Zone of Influence Technical Memorandum. Washington State Department of Transportation, WSDOT Office of Air Quality and Noise. November 8, 2017.

_____. 2017c. Coupeville Ferry Terminal Acoustic Monitoring, 2017. Pers. comm. J. Laughlin to R. Huey/J. Dreier. October 30, 2017.

_____. 2017d. Mukilteo Vibratory Distances and Source Level Estimates (new method). Email to Jeff Dreier (WSDOT), October 30, 2017.

_____. 2015. Mukilteo Fuel Pier Demo Zone of Influence Measurements for Removal of Timber Piles – Vibratory Pile Monitoring Technical Memorandum. Washington State Department of Transportation, Vashon Acoustic Monitoring, WSDOT Office of Air Quality and Noise. August 6, 2015.

_____. 2011. Port Townsend Test Pile Project: Underwater Noise Monitoring Draft Final Report. WSDOT Office of Air Quality and Noise. November 10, 2010.

_____. 2010a. Personal Communication between Rick Huey (WSF) and Jim Laughlin on November 15, 2010.

_____. 2010b. Airborne Noise Measurements (A-weighted and un-weighted) during Vibratory Pile Installation – Technical Memorandum. Prepared by the Washington State Department of Transportation, Office of Air Quality and Noise. June 21, 2010. Seattle, WA.

_____. 2010c. Manette Bridge Vibratory Pile Driving Noise Measurements - Technical Memorandum. WSDOT Office of Air Quality and Noise. October 25, 2010.

Marine Mammal Commission. 2003. Marine Mammal Commission Annual Report to Congress, 2002. Chapter III. Species of Concern: Humpback Whales in the Central North Pacific. March 31, 2003. pp. 45–50.

National Marine Fisheries Service (NMFS). 1991. Final Recovery Plan for the Humpback Whale (*Megaptera novaeangliae*). US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Protected Resources. November 1991.

——. 2008. Recovery Plan for Southern Resident Killer Whales (*Orcinus orca*). National Marine Fisheries Service, Northwest Region, Seattle, Washington. January 2008.

———. 2009. Guidance Document: Data Collection Methods to Characterize Background and Ambient Sound within Inland Waters of Washington State. National Marine Fisheries Service, Northwest Region, Seattle, Washington. November 2009.

_____. 2013a. Protected Resources Glossary: http://www.nmfs.noaa.gov/pr/glossary.htm#pbr

_____. 2013b. Killer Whale: West Coast Transient Stock. http://www.nmfs.noaa.gov/pr/sars/2013/ak2013_killerwhale-wc.pdf

_____. 2014. Harbor Seal Stock Assessment. Washington Inland Waters. July 15, 2014. http://www.nmfs.noaa.gov/pr/sars/2013/po2013_harborseal-wainland.pdf

-------. 2015a. Northern Elephant Seal: California Breeding Stock. July 31, 2015. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2014/po2014_nelephant_seal-ca.pdf

-------. 2015b. California Sea Lion Stock Assessment. June 30, 2015. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2014/po2014_ca_sea_lion-us.pdf

——. 2015c. Finding on Petition to Revise SRKW Critical Habitat. February 23, 2015. NMFS. Seattle, WA.

http://www.westcoast.fisheries.noaa.gov/protected_species/marine_mammals/killer_whale/srkw_chronol ogy_actions.html

_____. 2015d. Gray Whale Stock Assessment. July 31, 2015. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2014/po2014_gray_whale_enp.pdf

_____. 2016a. Marine Mammal Stranding Report. Kristin Wilkinson, Assistant Regional Stranding Coordinator, NOAA Fisheries, Protected Resources Division, West Coast Region. January 28, 2016. Seattle, WA

-------. 2016b. Steller Sea Lion Stock Assessment. December 30, 2016. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/alaska/2016/ak2016_ssl-eastern.pdf

_____. 2016d. Minke Whale CA/OR/WA Stock Assessment. August 16, 2016. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2016/po2016_miw-cow.pdf

_____. 2017a. Harbor Porpoise Washington Inland Waters Stock Assessment. February 6, 2017. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2016/po2016_hap-wiw.pdf

_____. 2017b. Dall's Porpoise California/Oregon/Washington Stock Assessment. February 9, 2017. http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2016/po2016_dap.pdf

_____. 2017c. Common Bottlenose Dolphin California/Oregon/Washington Offshore Stock Assessment. Revised February 7, 2017. <u>http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2016/po2016_cbd-cowo.pdf</u>

_____. 2017d. Long-beaked Common Dolphin – California Stock Assessment. Revised February 10, 2017. <u>http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2016/po2016_cdlb-c.pdf</u>

_____. 2017e. Short-beaked Common Dolphin. California/Oregon/Washington Stock Assessment. Revised February 7, 2017. <u>http://www.nmfs.noaa.gov/pr/sars/pdf/stocks/pacific/2016/po2016_cdsb-cow.pdf</u>

_____. 2019 (Draft). Humpback Whale Stock Assessment. California/Oregon/Washington Stock. August 15, 2019. <u>file:///C:/Users/hueyr/Downloads/draft2019SARs_Pacific_508.pdf</u>

Norberg, B. 2007. Personal email communication between Brent Norberg (NMML Biologist) and Andrea Balla-Holden (Fisheries and Marine Mammal Biologist) on Monday April 30, 2007.

Nysewander, D.R., J.R. Evenson, B.L. Murphie, T.A. Cyra. 2005. Report of marine bird and mammal component, Puget Sound Ambient Monitoring Program, for July 1992 to December 1999 period. Unpublished Report, Washington State Department of Fish and Wildlife, Wildlife Management Program, Olympia, Washington.

Orca Network. 2017. Southern Resident Orca Community Demographics, Composition of Pods, Births, and Deaths since 1998. Accessed November 30, 2017.

http://www.orcanetwork.org/Main/index.php?categories_file=Births%20and%20Deaths

Orca Network. 2015a. Elephant Seal Sightings. Central Puget Sound Marine Mammal Stranding Network 2015 from Orca Network. March 21, 2015.

Orca Network. 2015b. Orca Network Sightings Archives. http://www.orcanetwork.org/Archives/index.php?categories_file=Sightings%20Archives%20Home

Osborne, R.W. 1999. A historical ecology of Salish Sea "resident" killer whales (*Orcinus orca*): with implications for management. Ph.D. Thesis, University of Victoria, Victoria, British Columbia.

Osborne, R., J. Calambokidis, and E.M. Dorsey. 1988. A guide to marine mammals of greater Puget Sound. 191 p. Island Publishers, Anacortes, Washington.

Osmek, S., P. Rosel, A. Dizon, and R. DeLong. 1994. Harbor porpoise, *Phocoena phocoena*, population assessment in Oregon and Washington, 1993. 1993 Annual Report to the MMPA Assessment Program, Office of Protected Resources, NMFS, NOAA, 1335 East-West Highway, Silver Spring, MD 20910. 14 pp. Available at National Marine Mammal Laboratory, 7600 Sand Point Way NE, Seattle, Washington, 98115.

Pitcher, K.W. and D.C. McAllister. 1981. Movements and haul out behavior of radio-tagged harbor seals, *Phoca vitulina. Can. Field Nat.* 95:292–297.

Pitcher, K.W., and D.G. Calkins. 1979. Biology of the harbor seal, *Phoca vitulina richardsi*, on Tugidak Island, Gulf of Alaska. Final rep., OCSEAP, Dep. of Interior, Bur. Land Manage. 72 p. (Available from Alaska Fisheries Science Center, Natl. Mar. Fish. Serv., NOAA, 7600 Sand Point Way NE, Seattle, Washington, 98115.)

Roni, P.R and L.A. Weitkamp. 1996. Environmental monitoring of the Manchester naval fuel pier replacement, Puget Sound, Washington, 1991-1994. Report for the Department of the Navy and the Coastal Zone and Estuarine Studies Division, Northwest Fisheries Science Center, National Marine Fisheries Service, January 1996.

Scheffer, V.B. and J.W. Slipp. 1944. The harbor seal in Washington State. Am. Midl. Nat. 32(2):373-416

Southall, B.L., A.E. Bowles, W.T. Ellison, J.J. Finneran, R.L. Gentry, C.R. Greene Jr., D. Kastak, D.R. Ketten, J.H. Miller, P.E. Nachtigal, W.J. Richardson, J.A. Thomas, and P.L. Tyak. 2007. Marine Mammal Noise Exposure Criteria: Initial Scientific Recommendations. Aquatic Mammals, Volume 33(4).

Steiger, G.H. and J. Calambokidis. 1986. California and northern sea lions in southern Puget Sound, Washington. *Murrelet* 67:93–96.

The Whale Museum (TWM). 2016. Marine Mammal Sightings Report for Mukilteo Multimodal Project. Prepared for Rick Huey (WSF). January 22, 2016. Friday Harbor, Washington.

U.S. Department of the Navy (U.S. Navy). 2016. Naval Station Everett Security Fence Haulout Marine Mammal Counts data. Personal communication Andrea Balla-Holden (Naval Facilities Engineering Command Northwest) to Jeff Dreier (WSDOT). Olympia, WA. February 10, 2016.

_____. 2014. Commander Task Force 3rd and 7th Fleet Navy Marine Species Density Database. NAVFAC Pacific Technical Report. Naval Facilities Engineering Command Pacific, Pearl Harbor, HI.

Washington Department of Fish and Wildlife (WDFW). 1993. Status of the Steller (northern) sea lion (*Eumetopias jubatus*) in Washington. Draft unpubl. rep. Washington Department of Wildlife, Olympia, Washington.

_____. 2004. Washington State Status Report for the Killer Whale (Orca). <u>http://wdfw.wa.gov/publications/00381/</u>. March 2004. Olympia, WA.

——. 2008. Marine Bird and Mammal Component, Puget Sound Ambient Monitoring Program (PSAMP), 1992–2008. WDFW Wildlife Resources Data Systems.

———. 2012. Harbor Seal Pupping Timeframes in Washington State. http://www.nwr.noaa.gov/Marine-Mammals/images/seal-pups-timing_1.jpg

Washington State Department of Transportation/Washington State Ferries. 2018. Mukilteo Multimodal Marine Year Two Mammal Monitoring Report. Washington State Ferries, Washington State Department of Transportation. Seattle, Washington. April 2018.

_____. 2017. Biological Assessment Preparation for Transportation Projects. Advanced Training Manual. Available at: <u>http://www.wsdot.wa.gov/Environment/Biology/BA/BAguidance.htm</u>

_____. 2016. Mukilteo Multimodal Marine Year One Mammal Monitoring Report. Washington State Ferries, Washington State Department of Transportation. Seattle, Washington. June 2016.

_____. 2014. Biological Assessment Reference. Washington State Ferries, Washington State Department of Transportation. Seattle, Washington. February 2014.

Wiles, G.J. 2004. Washington State status report for the killer whale. Washington Department Fish and Wildlife, Olympia. 106 p

Appendix A	Project Sheets (Electronic)
Appendix B	Mukilteo Multimodal Phase 1 Timber Vibratory Removal – Zone of Influence Technical Memorandum (Electronic)
Appendix C	Mukilteo Multimodal Phase 2 30-inch Steel Pile Vibratory Installation – Zone of Influence Technical Memorandum (Electronic)
Appendix D	NMFS Optional Spreadsheet Level A/Level B ZOI Calculations (Electronic)
Appendix E	Mukilteo Multimodal Project Marine Mammal Monitoring Data 2017-2020 (Electronic)
Appendix F	Mukilteo Multimodal Project Marine Mammal Monitoring Data 2015-2020 ZOI-1 Timber Removal Distance (Electronic)
Appendix G	The Whale Museum Sightings Report (Electronic)
Appendix H	ArcMap Steel Vibratory Map Package (Electronic)
Appendix I	ArcMap Steel Timber Vibratory Map Package (Electronic)

Appendix J Marine Mammal Monitoring Plan (provided in a separate document)